explicit specialization to a warning for C++98 mode (this is a defect report
resolution, so per our informal policy it should apply in C++98), and turn
the warning on by default for C++11 and later. In all cases where it fires, the
right thing to do is to remove the pointless explicit instantiation.
llvm-svn: 280308
-fprofile-dir=path allows the user to specify where .gcda files should be
emitted when the program is run. In particular, this is the first flag that
causes the .gcno and .o files to have different paths, LLVM is extended to
support this. -fprofile-dir= does not change the file name in the .gcno (and
thus where lcov looks for the source) but it does change the name in the .gcda
(and thus where the runtime library writes the .gcda file). It's different from
a GCOV_PREFIX because a user can observe that the GCOV_PREFIX_STRIP will strip
paths off of -fprofile-dir= but not off of a supplied GCOV_PREFIX.
To implement this we split -coverage-file into -coverage-data-file and
-coverage-notes-file to specify the two different names. The !llvm.gcov
metadata node grows from a 2-element form {string coverage-file, node dbg.cu}
to 3-elements, {string coverage-notes-file, string coverage-data-file, node
dbg.cu}. In the 3-element form, the file name is already "mangled" with
.gcno/.gcda suffixes, while the 2-element form left that to the middle end
pass.
llvm-svn: 280306
I tested the cases involving split-dwarf + gmlt +
no-split-dwarf-inlining, but didn't verify the simpler case without
gmlt.
The logic is, admittedly, a little hairy, but seems about as simple as I
could wrangle it.
llvm-svn: 280290
indirect virtual bases. We don't need to be able to invoke such an assignment
operator from the derived class, and we shouldn't delete the derived assignment
op if we can't do so.
llvm-svn: 280288
Classes with no virtual methods or whose virtual methods were all
inherited from virtual bases don't have a vfptr at offset zero. We were
crashing attempting to get the layout of that non-existent vftable.
We don't need any vshape info in this case because the debugger can
infer it from the base class information. The current class may not
introduce any virtual methods if we are in this situation.
llvm-svn: 280287
The shape is really just the number of methods in the vftable, since we
don't support 16 bit far calls. All calls are near. Encode this number
in the size of the artificial __vtbl_ptr_type DIDerivedType that we
generate. For DWARF, this will be a normal pointer, but for codeview
this will be a wide pointer that gets pattern matched into a
VFTableShape record. Insert this type into the element list of all
dynamic classes when emitting CodeView, so that the backend can emit the
shape even if the vptr lives in a primary base class.
Fixes PR28150
llvm-svn: 280255
clang-format.py previously only worked in vim compiled against python2.
This patch adds the necessary syntax changes to make this work with vim
linked against python3, which is now shipped by default for at least Ubuntu16 and Arch.
Differential Revision: https://reviews.llvm.org/D23319
Subscribers: cfe-commits
llvm-svn: 280240
-ffast-math to CC1, but it included a wrong llvm regression tests which was
removed in r280065. Although regression test noexceptionsfpmath.c makes sure
-fno-trapping-math ends up as a function attribute, this adds a test that
explicitly checks the driver output for -fno-trapping-math.
llvm-svn: 280227
These clang tests check diagnostics from the backend by giving it an unvectorizable loop. This loop is now vectorized :/
Make it really unvectorizable by making it unprofitable to ifconvert.
llvm-svn: 280220
In most cases these code regions are just redundant, but sometimes they
could be assigned to the counter of the parent code region instead of
the counter of the nested block.
Differential Revision: https://reviews.llvm.org/D23987
llvm-svn: 280199
These will be reused when removing some builtins from avx512vldqintrin.h and this will make the tests for that change show a better number of vector elements.
llvm-svn: 280196
within the instantiation of that same specialization. This could previously
happen for eagerly-instantiated function templates, variable templates,
exception specifications, default arguments, and a handful of other cases.
We still have an issue here for default template arguments that recursively
make use of themselves and likewise for substitution into the type of a
non-type template parameter, but in those cases we're producing a different
entity each time, so they should instead be caught by the instantiation depth
limit. However, currently we will typically run out of stack before we reach
it. :(
llvm-svn: 280190
'cc1' is a valid sequence of hexadecimal and sometimes can occur in the path
when testing. This can lead to FileCheck matching the incorrect occurance
of the 'cc1' string and causing a test failure. Join two adjacent flags
together into one check to prevent this.
llvm-svn: 280189
Fix a crash when relexing the underlying memory buffer to find incorrect
arguments to NSLocalizedString(). With precompiled headers, the raw
buffer may be NULL. Instead, use the source manager to get the buffer,
which will lazily create the buffer for precompiled headers.
rdar://problem/27429091
llvm-svn: 280174
On Windows, static libraries are named lib<name>.lib while import libraries are
named <name>.lib. Use the appropriate naming on itanium and msvc environments.
This is setup properly so that if a dynamic builtins is used on Windows, it
would do the right thing, although this is not currently wired through the
driver (i.e. there is no equivalent to -{shared,static}-gcc).
llvm-svn: 280169
This adds support for modules that require (no-)gnu-inline-asm
environment, such as the compiler builtin cpuid submodule.
This is the gnu-inline-asm variant of https://reviews.llvm.org/D23871
Differential Revision: https://reviews.llvm.org/D23905
rdar://problem/26931199
llvm-svn: 280159
This reverts commit r280142. Mehdi suggested a better way to fix up the
test: just create a fake libLTO.dylib and tell the driver where to find
it. Patch incoming...
llvm-svn: 280149
Running 'check-clang' on a stock checkout of llvm+clang doesn't work on
Darwin, because test/Driver/darwin-ld-lto.c can't find libLTO.dylib. Add
libLTO as a clang test dependency on Darwin to fix the problem.
Note: We don't have this issue with check-all because libLTO is in the
test-depends target.
Differential Revision: https://reviews.llvm.org/D24042
llvm-svn: 280142
r280133. Original commit message:
C++ Modules TS: driver support for building modules.
This works as follows: we add --precompile to the existing gamut of options for
specifying how far to go when compiling an input (-E, -c, -S, etc.). This flag
specifies that an input is taken to the precompilation step and no further, and
this can be specified when building a .pcm from a module interface or when
building a .pch from a header file.
The .cppm extension (and some related extensions) are implicitly recognized as
C++ module interface files. If --precompile is /not/ specified, the file is
compiled (via a .pcm) to a .o file containing the code for the module (and then
potentially also assembled and linked, if -S, -c, etc. are not specified). We
do not yet suppress the emission of object code for other users of the module
interface, so for now this will only work if everything in the .cppm file has
vague linkage.
As with the existing support for module-map modules, prebuilt modules can be
provided as compiler inputs either via the -fmodule-file= command-line argument
or via files named ModuleName.pcm in one of the directories specified via
-fprebuilt-module-path=.
This also exposes the -fmodules-ts cc1 flag in the driver. This is still
experimental, and in particular, the concrete syntax is subject to change as
the Modules TS evolves in the C++ committee. Unlike -fmodules, this flag does
not enable support for implicitly loading module maps nor building modules via
the module cache, but those features can be turned on separately and used in
conjunction with the Modules TS support.
llvm-svn: 280134
r271042 changed the way the diagnostic arguments are parsed. It assumes that
the diagnostics options were already parsed by the "Driver".
For tools using clang::Tooling, the diagnostics argument were not parsed.
Differential Revision: https://reviews.llvm.org/D23837
llvm-svn: 280118
Summary: Make is_valid_event and create_user_event overloadable like other built-ins.
Patch by Evgeniy Tyurin.
Reviewers: bader, yaxunl
Subscribers: Anastasia, cfe-commits
Differential Revision: https://reviews.llvm.org/D23914
llvm-svn: 280097
to CC1, which are translated to function attributes and can e.g. be mapped on
build attributes FP_exceptions and FP_denormal. Setting these build attributes
allows better selection of floating point libraries.
Differential Revision: https://reviews.llvm.org/D23840
llvm-svn: 280064
The PPC64 DWARF register-size table did not match the ABI specification (or
GCC, for that matter). Fix that, and add a regression test.
Fixes PR27931.
llvm-svn: 280053
This works as follows: we add --precompile to the existing gamut of options for
specifying how far to go when compiling an input (-E, -c, -S, etc.). This flag
specifies that an input is taken to the precompilation step and no further, and
this can be specified when building a .pcm from a module interface or when
building a .pch from a header file.
The .cppm extension (and some related extensions) are implicitly recognized as
C++ module interface files. If --precompile is /not/ specified, the file is
compiled (via a .pcm) to a .o file containing the code for the module (and then
potentially also assembled and linked, if -S, -c, etc. are not specified). We
do not yet suppress the emission of object code for other users of the module
interface, so for now this will only work if everything in the .cppm file has
vague linkage.
As with the existing support for module-map modules, prebuilt modules can be
provided as compiler inputs either via the -fmodule-file= command-line argument
or via files named ModuleName.pcm in one of the directories specified via
-fprebuilt-module-path=.
This also exposes the -fmodules-ts cc1 flag in the driver. This is still
experimental, and in particular, the concrete syntax is subject to change as
the Modules TS evolves in the C++ committee. Unlike -fmodules, this flag does
not enable support for implicitly loading module maps nor building modules via
the module cache, but those features can be turned on separately and used in
conjunction with the Modules TS support.
llvm-svn: 280035