Without the fast math flags, the llvm.experimental.vector.reduce.fadd/fmul intrinsic expansions must be expanded in order.
This patch scalarizes the reduction, applying the accumulator at the start of the sequence: ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[NumElts-1]
Differential Revision: https://reviews.llvm.org/D45366
llvm-svn: 329585
Summary:
We do not try to move the instructions and split the block till we
know the blocks can be split, i.e. BCE-cmp-insts can be separated from
non-BCE-cmp-insts.
Reviewers: davide, courbet
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D44443
llvm-svn: 329564
In IRCE, we have a very old legacy check that works when we collect comparisons that we
treat as range checks. It ensures that the value against which the indvar is compared is
loop invariant and is also positive.
This latter condition remained there since the times when IRCE was only able to handle
signed latch comparison. As the optimization evolved, it now learned how to intersect
signed or unsigned ranges, and this logic has no reliance on the fact that the right border
of each range should be positive.
The old implementation of this non-negativity check was also naive enough and just looked
into ranges (while most of other IRCE logic tries to use power of SCEV implications), so this
check did not allow to deal with the most simple case that looks like follows:
int size; // not known non-negative
int length; //known non-negative;
i = 0;
if (size != 0) {
do {
range_check(i < size);
range_check(i < length);
++i;
} while (i < size)
}
In this case, even if from some dominating conditions IRCE could parse loop
structure, it could only remove the range check against `length` and simply
ignored the check against `size`.
In this patch we remove this obsolete check. It will allow IRCE to pick comparison
against `size` as a potential range check and then let Range Intersection logic
decide whether it is OK to eliminate it or not.
Differential Revision: https://reviews.llvm.org/D45362
Reviewed By: samparker
llvm-svn: 329547
Summary:
Fixing an issue where initializations of globals where constructors use
casts were silently translated to 0-initialization.
Reviewers: davidxl, evgeny777
Reviewed By: evgeny777
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D45198
llvm-svn: 329409
Inserting instrumentation between a musttail call and ret instruction
would create invalid IR. Instead, treat musttail calls as function
exits.
llvm-svn: 329385
This restores what was lost with rL73243 but without
re-introducing the bug that was present in the old code.
Note that we already have these transforms if the ops are
marked 'fast' (and I assume that's happening somewhere in
the code added with rL170471), but we clearly don't need
all of 'fast' for these transforms.
llvm-svn: 329362
Summary:
This is a fix to PR37005.
Essentially, rL328539 ([InstCombine] reassociate loop invariant GEP chains to enable LICM) contains a bug
whereby it will convert:
%src = getelementptr inbounds i8, i8* %base, <2 x i64> %val
%res = getelementptr inbounds i8, <2 x i8*> %src, i64 %val2
into:
%src = getelementptr inbounds i8, i8* %base, i64 %val2
%res = getelementptr inbounds i8, <2 x i8*> %src, <2 x i64> %val
By swapping the index operands if the GEPs are in a loop, and %val is loop variant while %val2
is loop invariant.
This fix recreates new GEP instructions if the index operand swap would result in the type
of %src changing from vector to scalar, or vice versa.
Reviewers: sebpop, spatel
Reviewed By: sebpop
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D45287
llvm-svn: 329331
LoopInterchange relies on LoopInfo being up-to-date, so we should
preserve it after interchanging. This patch updates restructureLoops to
move the BBs of the interchanged loops to the right place.
Reviewers: davide, efriedma, karthikthecool, mcrosier
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D45278
llvm-svn: 329264
Summary:
If the callsite is inside landing pad, do not perform callsite splitting.
Callsite splitting uses utility function llvm::DuplicateInstructionsInSplitBetween, which eventually calls llvm::SplitEdge. llvm::SplitEdge calls llvm::SplitCriticalEdge with an assumption that the function returns nullptr only when the target edge is not a critical edge (and further assumes that if the return value was not nullptr, the predecessor of the original target edge always has a single successor because critical edge splitting was successful). However, this assumtion is not true because SplitCriticalEdge returns nullptr if the destination block is a landing pad. This invalid assumption results assertion failure.
Fundamental solution might be fixing llvm::SplitEdge to not to rely on the invalid assumption. However, it'll involve a lot of work because current API assumes that llvm::SplitEdge never fails. Instead, this patch makes callsite splitting to not to attempt splitting if the callsite is in a landing pad.
Attached test case will crash with assertion failure without the fix.
Reviewers: fhahn, junbuml, dberlin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D45130
llvm-svn: 329250
Sometimes instead of storing addresses as is, the kernel stores the address of
a page and an offset within that page, and then computes the actual address
when it needs to make an access. Because of this the pointer tag gets lost
(gets set to 0xff). The solution is to ignore all accesses tagged with 0xff.
This patch adds a -hwasan-match-all-tag flag to hwasan, which allows to ignore
accesses through pointers with a particular pointer tag value for validity.
Patch by Andrey Konovalov.
Differential Revision: https://reviews.llvm.org/D44827
llvm-svn: 329228
Fixes cases like the new test @nonuniform. In that test, %cc itself
is a uniform value; however, when reading it after the end of the loop in
basic block %if, its value is effectively non-uniform, so the branch is
non-uniform.
This problem was encountered in
https://bugs.freedesktop.org/show_bug.cgi?id=103743; however, this change
in itself is not sufficient to fix that bug, as there is another issue
in the AMDGPU backend.
As discovered after committing an earlier version of this change, this
exposes a subtle interaction between this pass and DivergenceAnalysis:
since we remove and re-create branch instructions, we can no longer rely
on DivergenceAnalysis for branches in subregions that were already
processed by the pass.
Explicitly remove branch instructions from DivergenceAnalysis to
avoid dangling pointers as a matter of defensive programming, and
change how we detect non-uniform subregions.
Change-Id: I32bbffece4a32f686fab54964dae1a5dd72949d4
Differential Revision: https://reviews.llvm.org/D43743
llvm-svn: 329165
Summary:
Currently merge conditional stores can't handle cases where PostBB (the block we need to move the store to) has more than 2 predecessors.
This patch removes that restriction by creating a new block with only the 2 predecessors we care about and an unconditional branch to the original block. This provides a place to put the store.
Reviewers: efriedma, jmolloy, ABataev
Reviewed By: efriedma
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D39760
llvm-svn: 329142
The tests marked with 'FIXME' require loosening the check
in SimplifyAssociativeOrCommutative() to optimize completely;
that's still checking isFast() in Instruction::isAssociative().
llvm-svn: 329121
Summary:
If an alloca need to be stored in the coroutine frame and it has an alignment specified and the alignment does not match the natural alignment of the alloca type. Insert appropriate padding into the coroutine frame to make sure that it gets requested alignment.
For example for a packet type (which natural alignment is 1), but alloca alignment is 8, we may need to insert a padding field with required number of bytes to make sure it is properly aligned.
```
%PackedStruct = type <{ i64 }>
...
%data = alloca %PackedStruct, align 8
```
If the previous field in the coroutine frame had alignment 2, we would have [6 x i8] inserted before %PackedStruct in the coroutine frame:
```
%f.Frame = type { ..., i16, [6 x i8], %PackedStruct }
```
Reviewers: rnk, lewissbaker, modocache
Reviewed By: modocache
Subscribers: EricWF, llvm-commits
Differential Revision: https://reviews.llvm.org/D45221
llvm-svn: 329112
It also updates test/Transforms/LoopInterchange/call-instructions.ll
to use accesses where we can prove dependence after D35430.
Reviewers: sebpop, karthikthecool, blitz.opensource
Reviewed By: sebpop
Differential Revision: https://reviews.llvm.org/D45206
llvm-svn: 329111
Summary:
Introduce the ShadowCallStack function attribute. It's added to
functions compiled with -fsanitize=shadow-call-stack in order to mark
functions to be instrumented by a ShadowCallStack pass to be submitted
in a separate change.
Reviewers: pcc, kcc, kubamracek
Reviewed By: pcc, kcc
Subscribers: cryptoad, mehdi_amini, javed.absar, llvm-commits, kcc
Differential Revision: https://reviews.llvm.org/D44800
llvm-svn: 329108
Summary:
Folding patterns like:
%vec = shufflevector <4 x i8> %insvec, <4 x i8> undef, <4 x i32> zeroinitializer
%cast = bitcast <4 x i8> %vec to i32
%cond = icmp eq i32 %cast, 0
into:
%ext = extractelement <4 x i8> %insvec, i32 0
%cond = icmp eq i32 %ext, 0
Combined with existing rules, this allows us to fold patterns like:
%insvec = insertelement <4 x i8> undef, i8 %val, i32 0
%vec = shufflevector <4 x i8> %insvec, <4 x i8> undef, <4 x i32> zeroinitializer
%cast = bitcast <4 x i8> %vec to i32
%cond = icmp eq i32 %cast, 0
into:
%cond = icmp eq i8 %val, 0
When we construct a splat vector via a shuffle, and bitcast the vector into an integer type for comparison against an integer constant. Then we can simplify the the comparison to compare the splatted value against the integer constant.
Reviewers: spatel, anna, mkazantsev
Reviewed By: spatel
Subscribers: efriedma, rengolin, llvm-commits
Differential Revision: https://reviews.llvm.org/D44997
llvm-svn: 329087
Summary:
If the load/extractelement/extractvalue instructions are not originally
consecutive, the SLP vectorizer is unable to vectorize them. Patch
allows reordering of such instructions.
Patch does not support reordering of the repeated instruction, this must
be handled in the separate patch.
Reviewers: RKSimon, spatel, hfinkel, mkuper, Ayal, ashahid
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D43776
llvm-svn: 329085
The primary issue here is that using NDEBUG alone isn't enough to guard
debug printing -- instead the DEBUG() macro needs to be used so that the
specific pass debug logging check is employed. Without this, every
asserts-enabled build was printing out information when it hit this.
I also fixed another place where we had multiple statements in a DEBUG
macro to use {}s to be a bit cleaner. And I fixed a place that used
errs() rather than dbgs().
llvm-svn: 329082
The default assembly handling mode may introduce false positives in the
cases when MSan doesn't understand that the assembly call initializes
the memory pointed to by one of its arguments.
We introduce the conservative mode, which initializes the first
|sizeof(type)| bytes for every |type*| pointer passed into the
assembly statement.
llvm-svn: 329054
The primary issue here is that using NDEBUG alone isn't enough to guard
debug printing -- instead the DEBUG() macro needs to be used so that the
specific pass debug logging check is employed. Without this, every
asserts-enabled build was printing out information when it hit this.
I also fixed another place where we had multiple statements in a DEBUG
macro to use {}s to be a bit cleaner. And I fixed a place that used
`errs()` rather than `dbgs()`.
llvm-svn: 329046
For Hexagon, peeling loops with small runtime trip count is beneficial for our
benchmarks. We set PeelCount in HexagonTargetInfo.cpp and we use PeelCount set
by the target for computing the desired peel count.
Differential Revision: https://reviews.llvm.org/D44880
llvm-svn: 329042
We use two approaches for determining the minimum bitwidth.
* Demanded bits
* Value tracking
If demanded bits doesn't result in a narrower type, we then try value tracking.
We need this if we want to root SLP trees with the indices of getelementptr
instructions since all the bits of the indices are demanded.
But there is a missing piece though. We need to be able to distinguish "demanded
and shrinkable" from "demanded and not shrinkable". For example, the bits of %i
in
%i = sext i32 %e1 to i64
%gep = getelementptr inbounds i64, i64* %p, i64 %i
are demanded, but we can shrink %i's type to i32 because it won't change the
result of the getelementptr. On the other hand, in
%tmp15 = sext i32 %tmp14 to i64
%tmp16 = insertvalue { i64, i64 } undef, i64 %tmp15, 0
it doesn't make sense to shrink %tmp15 and we can skip the value tracking.
Ideas are from Matthew Simpson!
Differential Revision: https://reviews.llvm.org/D44868
llvm-svn: 329035
Summary:
When attempting to split a coroutine with 'hidden' visibility (for
example, a C++ coroutine that is inlined when compiled with the option
'-fvisibility-inlines-hidden'), LLVM would hit an assertion in
include/llvm/IR/GlobalValue.h:240: "local linkage requires default
visibility". The issue is that the visibility is copied from the source
of the function split in the `CloneFunctionInto` function, but the linkage
is not. To fix, create the new function first with external linkage,
then copy the linkage from the original function *after* `CloneFunctionInto`
is called.
Since `GlobalValue::setLinkage` in turn calls `maybeSetDsoLocal`, the
explicit call to `setDSOLocal` can be removed in CoroSplit.cpp.
Test Plan: check-llvm
Reviewers: GorNishanov, lewissbaker, EricWF, majnemer, rnk
Reviewed By: rnk
Subscribers: llvm-commits, eric_niebler
Differential Revision: https://reviews.llvm.org/D44185
llvm-svn: 329033
Summary:
The cast simplifications that instcombine does here do not make any
attempt to obey the verifier rules for musttail calls. Therefore we have
to disable them.
Reviewers: efriedma, majnemer, pcc
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D45186
llvm-svn: 329027
Some Function level metadatas, such as function entry count, are not cloned in
DeadArgumentElim. This happens a lot in lto/thinlto because of DeadArgumentElim
after internalization.
This patch clones the metadatas in the original function to the new function.
Differential Revision: https://reviews.llvm.org/D44127
llvm-svn: 328991