For hard float, it is legal.
For soft float, we need to lower to 0 - x first, and then we can use the
libcall for G_FSUB. This is undoing some of the canonicalization
performed by the IRTranslator (which introduces G_FNEG when it sees a
0 - x). Ideally, that canonicalization would be performed by a
pre-legalizer pass that would allow targets to opt out of this behaviour
rather than dance around it in the legalizer.
llvm-svn: 322168
Summary:
This extends TableGen's AsmMatcherEmitter with code that generates
a table with tied-operand constraints. The constraints are checked
when parsing the instruction. If an operand is not equal to its tied operand,
the assembler will give an error.
Patch [2/3] in a series to add operand constraint checks for SVE's predicated ADD/SUB.
Reviewers: olista01, rengolin, mcrosier, fhahn, craig.topper, evandro, echristo
Reviewed By: fhahn
Subscribers: javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D41446
llvm-svn: 322166
Prefetches used to always be chained between any previous and following
memory accesses. The problem with this was that later optimizations, such as
folding of a load into the user instruction, got disrupted.
This patch relaxes the chaining of prefetches in order to remedy this.
Reveiw: Hal Finkel
https://reviews.llvm.org/D38886
llvm-svn: 322163
Since a load and test instruction treat its operands as signed, it can only
replace a logical compare for EQ/NE uses.
Review: Ulrich Weigand
https://bugs.llvm.org/show_bug.cgi?id=35662
llvm-svn: 322161
Planning to add support for named vregs. This puts is in a conundrum since
physregs are named as well. To rectify this we need to use a sigil other than
'%' for physregs in MIR. We've settled on using '$' for physregs but first we
must repurpose it from external symbols using it, which is what this commit is
all about. We think '&' will have familiar semantics for C/C++ users.
llvm-svn: 322146
version being used on some of the green dragon builders (plus a clang-format).
Workaround: AsynchronousSymbolQuery and VSO want to work with
JITEvaluatedSymbols anyway, so just use them (instead of JITSymbol, which
happens to tickle the bug).
The libcxx bug being worked around was fixed in r276003, and there are plans to
update the offending builders.
llvm-svn: 322140
Summary:
LowerTypeTests moves some function definitions from individual object
files to the merged module, leaving a stub to be called in the merged
module's jump table. If an alias was pointing to such a function
definition LowerTypeTests would fail because the alias would be left
without a definition to point to.
This change 1) emits information about aliases to the ThinLTO summary,
2) replaces aliases pointing to function definitions that are moved to
the merged module with function declarations, and 3) re-emits those
aliases in the merged module pointing to the correct function
definitions.
The patch does not correctly fix all possible mis-uses of aliases in
LowerTypeTests. For example, it does not handle aliases with a different
type from the pointed to function.
The addition of alias data increases the size of Chrome build artifacts
by less than 1%.
Reviewers: pcc
Reviewed By: pcc
Subscribers: mehdi_amini, eraman, mgrang, llvm-commits, eugenis, kcc
Differential Revision: https://reviews.llvm.org/D41741
llvm-svn: 322139
Adds option /guard:cf to clang-cl and -cfguard to cc1 to emit function IDs
of functions that have their address taken into a section named .gfids$y for
compatibility with Microsoft's Control Flow Guard feature.
The original patch didn't have the lit.local.cfg file that restricts the new
test to x86, thus the new test was failing on the non-x86 bots.
Differential Revision: https://reviews.llvm.org/D40531
The reverts r322008, which was a revert of r322005.
This reverts commit a05b89f9aca70597dc79fe97bc49b50b51f525ba.
llvm-svn: 322136
This is more in line with what happens in the final
executable when symbols are undefined (i.e. weak
references).
Differential Revision: https://reviews.llvm.org/D41840
llvm-svn: 322130
Summary:
When performing constant propagation for call instructions we have historically replaced all uses of the return from a call, but not removed the call itself. This is required for correctness if the calls have side effects, however the compiler should be able to safely remove calls that don't have side effects.
This allows the compiler to completely fold away calls to functions that have no side effects if the inputs are constant and the output can be determined at compile time.
Reviewers: davide, sanjoy, bruno, dberlin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D38856
llvm-svn: 322125
This patch makes the following changes to the schedule of instructions in the
prologue and epilogue.
The stack pointer update is moved down in the prologue so that the callee saves
do not have to wait for the update to happen.
Saving the lr is moved down in the prologue to hide the latency of the mflr.
The stack pointer is moved up in the epilogue so that restoring of the lr can
happen sooner.
The mtlr is moved up in the epilogue so that it is away form the blr at the end
of the epilogue. The latency of the mtlr can now be hidden by the loads of the
callee saved registers.
This commit is almost identical to this one: r322036 except that two warnings
that broke build bots have been fixed.
The revision number is D41737 as before.
llvm-svn: 322124
These indexes are useful because they are not always zero based and
functions and globals are referenced elsewhere by their index.
This matches what we already do for the type index space.
Differential Revision: https://reviews.llvm.org/D41877
llvm-svn: 322121
Summary:
In the case of an fp_extend of v1f16 to v1f32 where the v1f16 is the
result of a bitcast from i16, avoid creating an illegal fp16_to_fp where
the input is not a vector and the result is a v1f32.
V2: The fix is now to avoid vector scalarization creating a v1->scalar
bitcast.
Reviewers: srhines, t.p.northover
Subscribers: nhaehnle, llvm-commits, dstuttard, t-tye, yaxunl, wdng, kzhuravl, arsenm
Differential Revision: https://reviews.llvm.org/D41126
llvm-svn: 322120
Summary:
I had a case where multiple nested uniform ifs resulted in code that did
v_cmp comparisons, combining the results with s_and_b64, s_or_b64 and
s_xor_b64 and using the resulting mask in s_cbranch_vccnz, without first
ensuring that bits for inactive lanes were clear.
There was already code for inserting an "s_and_b64 vcc, exec, vcc" to
clear bits for inactive lanes in the case that the branch is instruction
selected as s_cbranch_scc1 and is then changed to s_cbranch_vccnz in
SIFixSGPRCopies. I have added the same code into SILowerControlFlow for
the case that the branch is instruction selected as s_cbranch_vccnz.
This de-optimizes the code in some cases where the s_and is not needed,
because vcc is the result of a v_cmp, or multiple v_cmp instructions
combined by s_and/s_or. We should add a pass to re-optimize those cases.
Reviewers: arsenm, kzhuravl
Subscribers: wdng, yaxunl, t-tye, llvm-commits, dstuttard, timcorringham, nhaehnle
Differential Revision: https://reviews.llvm.org/D41292
llvm-svn: 322119
Summary:
This pass synthesizes function entry counts by traversing the callgraph
and using the relative block frequencies of the callsites. The intended
use of these counts is in inlining to determine hot/cold callsites in
the absence of profile information.
The pass is split into two files with the code that propagates the
counts in a callgraph in a Utils file. I plan to add support for
propagation in the thinlto link phase and the propagation code will be
shared and hence this split. I did not add support to the old PM since
hot callsite determination in inlining is not possible in old PM
(although we could use hot callee heuristic with synthetic counts in the
old PM it is not worth the effort tuning it)
Reviewers: davidxl, silvas
Subscribers: mgorny, mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D41604
llvm-svn: 322110
Summary:
https://reviews.llvm.org/rL321877 introduced the `OptTable::findNearest`
method, to find the closest edit distance option for a given string.
However, the implementation contained a bug: for a typo `-foo` with an
edit distance of 1 away from a valid option `--foo`, `findNearest`
would suggest a nearby option of `foo`. That is, the result would not
include the `--` prefix, and so was not a valid option.
Fix the bug by ensuring that the prefix string is initialized to one of
the valid prefixes for the option.
Test Plan: `check-llvm-unit`
Reviewers: v.g.vassilev, teemperor, ruiu, jroelofs, yamaguchi
Reviewed By: jroelofs
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41873
llvm-svn: 322109
Summary:
If the vector type is transformed to non-vector single type, the compile
may crash trying to get vector information about non-vector type.
Reviewers: RKSimon, spatel, mkuper, hfinkel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41862
llvm-svn: 322106
Because of potential UB (known bits conflicts with an llvm.assume),
we have to check rather than assert here because InstSimplify doesn't
kill the compare:
https://bugs.llvm.org/show_bug.cgi?id=35846
llvm-svn: 322104
Summary:
With DebugTypeODRUniquing enabled, during IR linking debug metadata
in the destination module may be reached from the source module.
This means that ConstantAsMetadata nodes (e.g. on DITemplateValueParameter)
may contain a value the destination module. When trying to map such
metadata nodes, we will attempt to map a GV already in the dest module.
linkGlobalValueProto will end up with a source GV that is the same as
the dest GV as well as the new GV. Trying to access the TypeMap for the
source GV type, which is actually a dest GV type, hits an assertion
since it appears that we have mapped into the source module (because the
type is the value not a key into the map).
Detect that we don't need to access the TypeMap in this case, since
there is no need to create a bitcast from the new GV to the source GV
type as they GV are the same.
Fixes PR35722.
Reviewers: mehdi_amini, pcc
Subscribers: probinson, llvm-commits, eraman
Differential Revision: https://reviews.llvm.org/D41624
llvm-svn: 322103
Normally target independent DAG combine would do this combine based on getSetCCResultType, but with VLX getSetCCResultType returns a vXi1 type preventing the DAG combining from kicking in.
But doing this combine can allow us to remove the explicit sign extend that would otherwise be emitted.
This patch adds a target specific DAG combine to combine the sext+setcc when the result type is the same size as the input to the setcc. I've restricted this to FP compares and things that can be represented with PCMPEQ and PCMPGT since we don't have full integer compare support on the older ISAs.
Differential Revision: https://reviews.llvm.org/D41850
llvm-svn: 322101
This change adds the missing armv8l variant as an alias of armv8 architecture.
The issue was observed with several regressions in validation on armv8l
hardware (for instance ExecutionEngine/frem.ll failed due to lack of neon fpu).
Tested with regression testsuite passed without regression on ARM and x86_64.
Patch by Yvan Roux.
Reviewers: rengolin, rogfer01, olista01, fhahn
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D41859
llvm-svn: 322098
In -debug output we print "pred:" whenever a MachineOperand is a
predicate operand in the instruction descriptor, and "opt:" whenever a
MachineOperand is an optional def in the instruction descriptor.
Differential Revision: https://reviews.llvm.org/D41870
llvm-svn: 322096
Summary:
The idea is that it would replace
(non-Writable)MemoryBuffer::getNewMemBuffer, which is quite useless
unless you const_cast its contents to write to it (which all (both)
callers of this function were doing). This patch also fixes one of the usages in
COFFWriter. After fixing the other usage in clang, I plan to delete the old
function.
Reviewers: dblaikie, Bigcheese
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41540
llvm-svn: 322094
Fixed issue that was found on sanitizer-x86_64-linux-fast.
I changed the result type of 'Parser.getTok().getString().lower()'
in AArch64AsmParser::tryParseSVEPredicateVector() from 'StringRef' to
'auto', since StringRef::lower() returns a std::string.
llvm-svn: 322092
Currently the MachineInstr::print function prints the
frame-setup/frame-destroy differently than it does in MIR.
Instead of:
%x21 = LDR %sp, -16; flags: FrameDestroy
print:
%x21 = frame-destroy LDR %sp, -16
llvm-svn: 322088
Ingredients in this patch:
1. Add HANDLE_LIBCALL defs for finite mathlib functions that correspond to LLVM intrinsics.
2. Plumbing to send TargetLibraryInfo down to SelectionDAGLegalize.
3. Relaxed math and library checking in SelectionDAGLegalize::ConvertNodeToLibcall() to choose finite libcalls.
There was a bug about determining the availability of the finite calls that should be fixed with:
rL322010
Not in this patch:
This doesn't resolve the question/bug of clang creating the intrinsic IR in the first place.
There's likely follow-up work needed to support the long double variants better.
There's room for improvement to reduce the code duplication.
Create finite calls that don't originate from a corresponding intrinsic or DAG node?
Differential Revision: https://reviews.llvm.org/D41338
llvm-svn: 322087
Since register classes and banks are already printed with the register
definition, don't print it at the end of every instruction anymore.
This follows MIR in this regard and is another step to the unification
of the two formats.
llvm-svn: 322086
EarlyCSE did not try to salvage debug info during erasing of instructions.
This change fixes it.
Patch by Djordje Todorovic.
Differential Revision: https://reviews.llvm.org/D41496
llvm-svn: 322083
We are printing / parsing the `frame-setup` MachineInstr flag but not
the `frame-destroy` one.
Differential Revision: https://reviews.llvm.org/D41509
llvm-svn: 322071
Summary:
Parsing of the '/m' (merging) or '/z' (zeroing) suffix of a predicate operand.
Patch [2/3] in a series to add predicated ADD/SUB instructions for SVE.
Reviewers: rengolin, mcrosier, evandro, fhahn, echristo, MatzeB, t.p.northover
Reviewed By: fhahn
Subscribers: t.p.northover, MatzeB, aemerson, javed.absar, tschuett, llvm-commits, kristof.beyls
Differential Revision: https://reviews.llvm.org/D41442
llvm-svn: 322070
Summary:
This commit enables some of the arithmetic instructions for Nios2 ISA (for both
R1 and R2 revisions), implements facilities required to emit those instructions
and provides LIT tests for added instructions.
Reviewed By: hfinkel
Differential Revision: https://reviews.llvm.org/D41236
Author: belickim <mateusz.belicki@intel.com>
llvm-svn: 322069
CET (Control-Flow Enforcement Technology) introduces a new mechanism called IBT (Indirect Branch Tracking).
According to IBT, each Indirect branch should land on dedicated ENDBR instruction (End Branch).
The new pass adds ENDBR instructions for every indirect jmp/call (including jumps using jump tables / switches).
For more information, please see the following:
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
Differential Revision: https://reviews.llvm.org/D40482
Change-Id: Icb754489faf483a95248f96982a4e8b1009eb709
llvm-svn: 322062
The code that checks the immediate wasn't masking to the lower 3-bits like the code in X86InstrInfo.cpp that's used by the peephole pass does.
llvm-svn: 322060
SCEV tracks the correspondence of created SCEV to original instruction.
However during creation of SCEV it is possible that nuw/nsw/exact flags are
lost.
As a result during expansion of the SCEV the instruction with nuw/nsw/exact
will be used where it was expected and we produce poison incorreclty.
Reviewers: sanjoy, mkazantsev, sebpop, jbhateja
Reviewed By: sanjoy
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41578
llvm-svn: 322058
If the offset is differ in two addressing mode we can continue only if
ScaleReg is not set due to we will use it as merge of different offsets.
It should fix PR35799 and PR35805.
Reviewers: john.brawn, reames
Reviewed By: reames
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41227
llvm-svn: 322056
The CTRLoop pass performs checks on the argument of certain libcalls/intrinsics,
and assumes the arguments must be of a simple type. This isn't always the case
though. For example if we unroll and vectorize a loop we may end up with vectors
larger then the largest legal type, along with intrinsics that operate on those
wider types. This happened in the ffmpeg build, where we unrolled a loop and
ended up with a sqrt intrinsic that operated on V16f64, triggering an assertion.
Differential Revision: https://reviews.llvm.org/D41758
llvm-svn: 322055
I had to drop fast-isel-abort from a test because we can't fast isel some of the mask stuff. When we used intrinsics we implicitly fell back to SelectionDAG for the intrinsic call without triggering the abort error. But with native IR that doesn't happen the same way.
llvm-svn: 322050
The pattern was this
def : Pat<(i32 (zext (i8 (bitconvert (v8i1 VK8:$src))))),
(MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS VK8:$src, GR32)), sub_8bit))>, Requires<[NoDQI]>;
but if you just let (i32 (zext X)) match byte itself you'll get MOVZX32rr8. And if you let (i8 (bitconvert (v8i1 VK8:$src))) match by itself you'll get (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS VK8:$src, GR32)), sub_8bit).
So we can just let isel do the two patterns naturally.
llvm-svn: 322049
This commit does two things. Firstly, it adds a collection of flags which can
be passed along to the target to encode information about the MBB that an
instruction lives in to the outliner.
Second, it adds some of those flags to the AArch64 outliner in order to add
more stack instructions to the list of legal instructions that are handled
by the outliner. The two flags added check if
- There are calls in the MachineBasicBlock containing the instruction
- The link register is available in the entire block
If the link register is available and there are no calls, then a stack
instruction can always be outlined without fixups, regardless of what it is,
since in this case, the outliner will never modify the stack to create a
call or outlined frame.
The motivation for doing this was checking which instructions are most often
missed by the outliner. Instructions like, say
%sp<def> = ADDXri %sp, 32, 0; flags: FrameDestroy
are very common, but cannot be outlined in the case that the outliner might
modify the stack. This commit allows us to outline instructions like this.
llvm-svn: 322048
This patch makes the following changes to the schedule of instructions in the
prologue and epilogue.
The stack pointer update is moved down in the prologue so that the callee saves
do not have to wait for the update to happen.
Saving the lr is moved down in the prologue to hide the latency of the mflr.
The stack pointer is moved up in the epilogue so that restoring of the lr can
happen sooner.
The mtlr is moved up in the epilogue so that it is away form the blr at the end
of the epilogue. The latency of the mtlr can now be hidden by the loads of the
callee saved registers.
Differential Revision: https://reviews.llvm.org/D41737
llvm-svn: 322036
The problem was that our Obj -> Yaml dumper had not been taught
to handle certain types of records. This meant that when I
generated the test input files, the records were still there but
none of its fields were filled out. So when it did the
Yaml -> Obj conversion as part of the test, it generated records
with garbage in them.
The patch here fixes the Obj <-> Yaml converter, and additionally
updates the test file with fresh Yaml generated by the fixed
converter.
llvm-svn: 322029
The last iterator of MBB should be recognized as MBB.end() not as
MBB.instr_end() which could return bundled instruction that is not iterable
with basic iterator.
Patch by Nikola Prica.
Differential Revision: https://reviews.llvm.org/D41626
llvm-svn: 322015
This patch was part of:
https://reviews.llvm.org/D41338
...but we can expose the bug in IR via constant propagation
as shown in the test. Unless the triple includes 'linux', we
should not fold these because the functions don't exist on
other platforms (yet?).
llvm-svn: 322010
The new test fails on the Hexagon bot. Reverting while I investigate.
This reverts https://reviews.llvm.org/rL322005
This reverts commit b7e0026b4385180c378edc658ec91a39566f2942.
llvm-svn: 322008
This is an attempt of fixing PR35807.
Due to the non-standard definition of dominance in LLVM, where uses in
unreachable blocks are dominated by anything, you can have, in an
unreachable block:
%patatino = OP1 %patatino, CONSTANT
When `SimplifyInstruction` receives a PHI where an incoming value is of
the aforementioned form, in some cases, loops indefinitely.
What I propose here instead is keeping track of the incoming values
from unreachable blocks, and replacing them with undef. It fixes this
case, and it seems to be good regardless (even if we can't prove that
the value is constant, as it's coming from an unreachable block, we
can ignore it).
Differential Revision: https://reviews.llvm.org/D41812
llvm-svn: 322006
Adds option /guard:cf to clang-cl and -cfguard to cc1 to emit function IDs
of functions that have their address taken into a section named .gfids$y for
compatibility with Microsoft's Control Flow Guard feature.
Differential Revision: https://reviews.llvm.org/D40531
llvm-svn: 322005
There is precedence for factorization transforms in instcombine for FP ops with fast-math.
We also have similar logic in foldSPFofSPF().
It would take more work to add this to reassociate because that's specialized for binops,
and min/max are not binops (or even single instructions). Also, I don't have evidence that
larger min/max trees than this exist in real code, but if we find that's true, we might
want to reorganize where/how we do this optimization.
In the motivating example from https://bugs.llvm.org/show_bug.cgi?id=35717 , we have:
int test(int xc, int xm, int xy) {
int xk;
if (xc < xm)
xk = xc < xy ? xc : xy;
else
xk = xm < xy ? xm : xy;
return xk;
}
This patch solves that problem because we recognize more min/max patterns after rL321672
https://rise4fun.com/Alive/Qjnehttps://rise4fun.com/Alive/3yg
Differential Revision: https://reviews.llvm.org/D41603
llvm-svn: 321998
Summary:
Fixes the bug with incorrect handling of InsertValue|InsertElement
instrucions in SLP vectorizer. Currently, we may use incorrect
ExtractElement instructions as the operands of the original
InsertValue|InsertElement instructions.
Reviewers: mkuper, hfinkel, RKSimon, spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41767
llvm-svn: 321994
Summary:
If the vectorized value is marked as extra reduction argument, its users
are not considered as external users. Patch fixes this.
Reviewers: mkuper, hfinkel, RKSimon, spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41786
llvm-svn: 321993
This patch allows `r7` to be used, regardless of its use as a frame pointer, as
a temporary register when popping `lr`, and also falls back to using a high
temporary register if, for some reason, we weren't able to find a suitable low
one.
Differential revision: https://reviews.llvm.org/D40961
Fixes https://bugs.llvm.org/show_bug.cgi?id=35481
llvm-svn: 321989
(Target)FrameLowering::determineCalleeSaves can be called multiple
times. I don't think it should have side-effects as creating stack
objects and setting global MachineFunctionInfo state as it is doing
today (in other back-ends as well).
This moves the creation of stack objects from determineCalleeSaves to
assignCalleeSavedSpillSlots.
Differential Revision: https://reviews.llvm.org/D41703
llvm-svn: 321987
The approach was never discussed, I wasn't able to reproduce this
non-determinism, and the original author went AWOL.
After a discussion on the ML, Philip suggested to revert this.
llvm-svn: 321974
I had removed the qualifiers around the autogenerated folding table so I could compare with the manual table, but didn't intend to commit the change.
llvm-svn: 321971
Allow SimplifyDemandedBits to use TargetLoweringOpt::computeKnownBits to look through bitcasts. This can help simplifying in some cases where bitcasts of constants generated during or after legalization can't be folded away, and thus didn't get picked up by SimplifyDemandedBits. This fixes PR34620, where a redundant pand created during legalization from lowering and lshr <16xi8> wasn't being simplified due to the presence of a bitcasted build_vector as an operand.
Committed on the behalf of @sameconrad (Sam Conrad)
Differential Revision: https://reviews.llvm.org/D41643
llvm-svn: 321969
Summary:
There are few oddities that occur due to v1i1, v8i1, v16i1 being legal without v2i1 and v4i1 being legal when we don't have VLX. Particularly during legalization of v2i32/v4i32/v2i64/v4i64 masked gather/scatter/load/store. We end up promoting the mask argument to these during type legalization and then have to widen the promoted type to v8iX/v16iX and truncate it to get the element size back down to v8i1/v16i1 to use a 512-bit operation. Since need to fill the upper bits of the mask we have to fill with 0s at the promoted type.
It would be better if we could just have the v2i1/v4i1 types as legal so they don't undergo any promotion. Then we can just widen with 0s directly in a k register. There are no real v4i1/v2i1 instructions anyway. Everything is done on a larger register anyway.
This also fixes an issue that we couldn't implement a masked vextractf32x4 from zmm to xmm properly.
We now have to support widening more compares to 512-bit to get a mask result out so new tablegen patterns got added.
I had to hack the legalizer for widening the operand of a setcc a bit so it didn't try create a setcc returning v4i32, extract from it, then try to promote it using a sign extend to v2i1. Now we create the setcc with v4i1 if the original setcc's result type is v2i1. Then extract that and don't sign extend it at all.
There's definitely room for improvement with some follow up patches.
Reviewers: RKSimon, zvi, guyblank
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41560
llvm-svn: 321967
Another small step forward to move VPlan stuff outside of LoopVectorize.cpp.
VPlanBuilder.h is renamed to LoopVectorizationPlanner.h
LoopVectorizationPlanner class is moved from LoopVectorize.cpp to
LoopVectorizationPlanner.h LoopVectorizationCostModel::VectorizationFactor
class is moved to LoopVectorizationPlanner.h (used by the planner class) ---
this needs further streamlining work in later patches and thus all I did was
take it out of the CostModel class and moved to the header file. The callback
function had to stay inside LoopVectorize.cpp since it calls an
InnerLoopVectorizer member function declared in it. Next Steps: Make
InnerLoopVectorizer, LoopVectorizationCostModel, and other classes more modular
and more aligned with VPlan direction, in small increments.
Previous step was: r320900 (https://reviews.llvm.org/D41045)
Patch by Hideki Saito, thanks!
Differential Revision: https://reviews.llvm.org/D41420
llvm-svn: 321962
In addition to target-dependent attributes, we can also preserve a
white-listed subset of target independent function attributes. The white-list
excludes problematic attributes, most prominently:
* attributes related to memory accesses, as alloca instructions
could be moved in/out of the extracted block
* control-flow dependent attributes, like no_return or thunk, as the
relerelevant instructions might or might not get extracted.
Thanks @efriedma and @aemerson for providing a set of attributes that cannot be
propagated.
Reviewers: efriedma, davidxl, davide, silvas
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D41334
llvm-svn: 321961
Summary:
I believe legalization is really expecting that ReplaceNodeResults will return something with the same type as the thing that's being legalized. Ultimately, it uses the output to replace the uses in the DAG so the type should match to make that work.
There are two relevant cases here. When crbits are enabled, then i1 is a legal type and getSetCCResultType should return i1. In this case, the truncate will be between i1 and i1 and should be removed (SelectionDAG::getNode does this). Otherwise, getSetCCResultType will be i32 and the legalizer will promote the truncate to be i32 -> i32 which will be similarly removed.
With this fixed we can remove some code from PromoteIntRes_SETCC that seemed to only exist to deal with the intrinsic being replaced with a larger type without changing the other operand. With the truncate being used for connectivity this doesn't happen anymore.
Reviewers: hfinkel
Reviewed By: hfinkel
Subscribers: nemanjai, llvm-commits, kbarton
Differential Revision: https://reviews.llvm.org/D41654
llvm-svn: 321959
The instructions that load 64-bits or an xmm register should be TB_NO_REVERSE to avoid the load being widened during unfold. The instructions that load 128-bits need to ensure 128-bit alignment.
llvm-svn: 321956