Summary:
This feature enables folding of logical shift operations of up to 3 places into addressing mode on Kryo and Falkor that have a fastpath LSL.
Reviewers: mcrosier, rengolin, t.p.northover
Subscribers: junbuml, gberry, llvm-commits, aemerson
Differential Revision: https://reviews.llvm.org/D31113
llvm-svn: 299240
Summary:
Similar to the ARM target in https://reviews.llvm.org/rL298380, this
patch adds identical infrastructure for disabling negative immediate
conversions, and converts the existing aliases to the new infrastucture.
Reviewers: rengolin, javed.absar, olista01, SjoerdMeijer, samparker
Reviewed By: samparker
Subscribers: samparker, aemerson, llvm-commits
Differential Revision: https://reviews.llvm.org/D31243
llvm-svn: 298908
Broadcom Vulcan is now Cavium ThunderX2T99.
LLVM Bugzilla: http://bugs.llvm.org/show_bug.cgi?id=32113
Minor fixes for the alignments of loops and functions for
ThunderX T81/T83/T88 (better performance).
Patch was tested with SpecCPU2006.
Patch by Stefan Teleman
Differential Revision: https://reviews.llvm.org/D30510
llvm-svn: 297190
The Fuchsia ABI defines slots from the thread pointer where the
stack-guard value for stack-protector, and the unsafe stack pointer
for safe-stack, are stored. This parallels the Android ABI support.
Patch by Roland McGrath
Differential Revision: https://reviews.llvm.org/D30237
llvm-svn: 296081
This set of patches adds support for Cavium ThunderX ARM64 processors:
* ThunderX
* ThunderX T81
* ThunderX T83
* ThunderX T88
Patch by Stefan Teleman
Differential Revision: https://reviews.llvm.org/D28891
llvm-svn: 295475
This feature enables the fusion of such operations on Cortex A57, as
recommended in its Software Optimisation Guide, sections 4.14 and 4.15.
Differential revision: https://reviews.llvm.org/D28698
llvm-svn: 293739
This feature enables the fusion of such operations on Cortex A57, as
recommended in its Software Optimisation Guide, section 4.13, and on Exynos
M1.
Differential revision: https://reviews.llvm.org/D28491
llvm-svn: 293738
In order to follow the pattern of the existing 'slow-misaligned-128store'
option, rename the option 'no-quad-ldst-pairs' to 'slow-paired-128'.
llvm-svn: 292954
Falkor only partially implements the ARMv8.1a extensions, so this patch
refactors the support for the SQRDML[A|S]H instruction into a separate
feature.
Differential Revision: https://reviews.llvm.org/D28681
llvm-svn: 292142
Summary:
This is preparation for ThunderX processors that have Large
System Extension (LSE) atomic instructions, but not the
other instructions introduced by V8.1a.
This will mimic changes to GCC as described here:
https://gcc.gnu.org/ml/gcc-patches/2015-06/msg00388.html
LSE instructions are: LD/ST<op>, CAS*, SWP
Reviewers: t.p.northover, echristo, jmolloy, rengolin
Subscribers: aemerson, mehdi_amini
Differential Revision: https://reviews.llvm.org/D26621
llvm-svn: 288279
Add support for estimating the square root or its reciprocal and division or
reciprocal using the combiner generic Newton series.
Differential revision: https://reviews.llvm.org/D25291
llvm-svn: 284986
The previous names were both misleading (the MachineLegalizer actually
contained the info tables) and inconsistent with the selector & translator (in
having a "Machine") prefix. This should make everything sensible again.
The only functional change is the name of a couple of command-line options.
llvm-svn: 284287
AArch64InstrInfo::shouldScheduleAdjacent() determines whether two
instruction can benefit from macroop fusion on apple CPUs. The list
turned out to be incomplete:
- the "rr" variants of the instructions were missing
- even the "rs" variants can have shift value == 0 and behave like the
"rr" variants
This also splits the MacropFusion target feature into
ArithmeticBccFusion and ArithmeticCbzFusion.
Differential Revision: https://reviews.llvm.org/D25142
llvm-svn: 283243
Many high-performance processors have a dedicated branch predictor for
indirect branches, commonly used with jump tables. As sophisticated as such
branch predictors are, they tend to have well defined limits beyond which
their effectiveness is hampered or even nullified. One such limit is the
number of possible destinations for a given indirect branches that such
branch predictors can handle.
This patch considers a limit that a target may set to the number of
destination addresses in a jump table.
Patch by: Evandro Menezes <e.menezes@samsung.com>, Aditya Kumar
<aditya.k7@samsung.com>, Sebastian Pop <s.pop@samsung.com>.
Differential revision: https://reviews.llvm.org/D21940
llvm-svn: 282412
This reverts part of commit 119e358d9635c8d1f3e7aee67e3ea3b8a62f8db6 by
removing FeatureUseRSqrt et al per request by Eric Christopher
<echristo@gmail.com> (v. http://bit.ly/2cmz6kW).
llvm-svn: 282001
This adds the actual MachineLegalizeHelper to do the work and a trivial pass
wrapper that legalizes all instructions in a MachineFunction. Currently the
only transformation supported is splitting up a vector G_ADD into one acting on
smaller vectors.
llvm-svn: 276461
TargetSubtargetInfo::overrideSchedPolicy takes two MachineInstr*
arguments (begin and end) that invite implicit conversions from
MachineInstrBundleIterator. One option would be to change their type to
an iterator, but since they don't seem to have been used since the API
was added in 2010, I'm deleting the dead code.
llvm-svn: 274304
Summary:
Code generation for Cortex-A72/Cortex-A73 was accidentally changed
by r271555, which was a NFCI. The isCortexA57() predicate was not true
for Cortex-A72/Cortex-A73 before r271555 (since it was checking the CPU
string). Because Cortex-A72/Cortex-A73 inherit all features from Cortex-A57,
all decisions previously guarded by isCortexA57() are now taken.
This change restores the behaviour before r271555 by adding separate
ProcA72/ProcA73, which have the required features to preserve code
generation.
Reviewers: kristof.beyls, aadg, mcrosier, rengolin
Subscribers: mcrosier, llvm-commits, aemerson, t.p.northover, MatzeB, rengolin
Differential Revision: http://reviews.llvm.org/D21182
llvm-svn: 273277
new instruction to ARM and AArch64 targets and several system registers.
Patch by: Roger Ferrer Ibanez and Oliver Stannard
Differential Revision: http://reviews.llvm.org/D20282
llvm-svn: 271670
Testing for specific CPUs has a number of problems, better use subtarget
features:
- When some tweak is added for a specific CPU it is often desirable for
the next version of that CPU as well, yet we often forget to add it.
- It is hard to keep track of checks scattered around the target code;
Declaring all target specifics together with the CPU in the tablegen
file is a clear representation.
- Subtarget features can be tweaked from the command line.
To discourage people from using CPU checks in the future I removed the
isCortexXX(), isCyclone(), ... functions. I added an getProcFamily()
function for exceptional circumstances but made it clear in the comment
that usage is discouraged.
Reformat feature list in AArch64.td to have 1 feature per line in
alphabetical order to simplify merging and sorting for out of tree
tweaks.
No functional change intended.
Differential Revision: http://reviews.llvm.org/D20762
llvm-svn: 271555
Rework the access to GlobalISel APIs to contain how much of
the APIs we need to access for the final executable to build when
GlobalISel is not built.
This prevents massive usage of ifdefs in various places. Now, all the
GlobalISel ifdefs will be happing only in AArch64TargetMachine.cpp.
llvm-svn: 265567
Original message:
Get rid of the ifdefs in TargetLowering.
Introduce a new API used only by GlobalISel: CallLowering.
This API will contain target hooks dedicated to call lowering.
llvm-svn: 260998
Disable post-ra scheduler for perturbed tests to appease the bots and to
preserve the history of the tests.
http://reviews.llvm.org/D15652
llvm-svn: 256158
This patch enables PostRAScheduler specifically for AArch64 generic build,
which is beneficial from the performance perspective.
Speedups up to 2 to 7% for some benchmarks on A57 and A53 are observed.
Also benchmarks from LLVM test-suite did not regress.
Differential Revision: http://reviews.llvm.org/D15557
llvm-svn: 255896
The Statistical Profiling Extension is an optional extension to
ARMv8.2-A. Since it is an optional extension, I have added the
FeatureSPE subtarget feature to control it. The assembler-visible parts
of this extension are the new "psb csync" instruction, which is
equivalent to "hint #17", and a number of system registers.
Differential Revision: http://reviews.llvm.org/D15021
llvm-svn: 254401
This adds subtarget features for ARMv8.2-A, which builds on (and
requires the features from) ARMv8.1-A. Most assembler-visible features
of ARMv8.2-A are system instructions, and are all required parts of the
architecture, so just depend on the HasV8_2aOps subtarget feature. There
is also one large, optional feature, which adds 16-bit floating point
versions of all existing floating-point instructions (VFP and SIMD),
this is represented by the FeatureFullFP16 subtarget feature.
Differential Revision: http://reviews.llvm.org/D15013
llvm-svn: 254154
AArch64 has the ability to use the top 8-bits of an "address" for extra
information, with the memory subsystem automatically masking them off for loads
and stores. When that's happening, we can sometimes skip masks on memory
operations in the compiler.
However, this requires the host OS and support stack to preserve those bits so
it can't be enabled everywhere. In principle iOS 8.0 and above do take the
required precautions and but we'll put it under a flag for now.
llvm-svn: 252573
Summary:
This is the first patch in the series to migrate Triple's (which are ambiguous)
to TargetTuple's (which aren't).
For the moment, TargetTuple simply passes all requests to the Triple object it
holds. Once it has replaced Triple, it will start to implement the interface in
a more suitable way.
This change makes some changes to the public C++ API. In particular,
InitMCSubtargetInfo(), createMCRelocationInfo(), and createMCSymbolizer()
now take TargetTuples instead of Triples. The other public C++ API's have
been left as-is for the moment to reduce patch size.
This commit also contains a trivial patch to clang to account for the C++ API
change. Thanks go to Pavel Labath for fixing LLDB for me.
Reviewers: rengolin
Subscribers: jyknight, dschuff, arsenm, rampitec, danalbert, srhines, javed.absar, dsanders, echristo, emaste, jholewinski, tberghammer, ted, jfb, llvm-commits, rengolin
Differential Revision: http://reviews.llvm.org/D10969
llvm-svn: 247692