Maybe this and the NumDeclsFound member should just be a std::vector
instead. (it could be a std::dynarray, but that missed standardization)
llvm-svn: 245392
This lets us pass functors (and lambdas) without void * tricks. On the
downside we can't pass CXXRecordDecl's Find* members (which are now type
safe) to lookupInBases directly, but a lambda trampoline is a small
price to pay. No functionality change intended.
llvm-svn: 243217
The patch is generated using this command:
$ tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
work/llvm/tools/clang
To reduce churn, not touching namespaces spanning less than 10 lines.
llvm-svn: 240270
This does limit these typedefs to being sequences, but no current usage
requires them to be contiguous (we could expand this to a more general
iterator pair range concept at some point).
Also, it'd be nice if SmallVector were constructible directly from an ArrayRef
but this is a bit tricky since ArrayRef depends on SmallVectorBaseImpl for the
inverse conversion. (& generalizing over all range-like things, while nice,
would require some nontrivial SFINAE I haven't thought about yet)
llvm-svn: 170482
uncovered.
This required manually correcting all of the incorrect main-module
headers I could find, and running the new llvm/utils/sort_includes.py
script over the files.
I also manually added quite a few missing headers that were uncovered by
shuffling the order or moving headers up to be main-module-headers.
llvm-svn: 169237
and defined within the current instantiation, but which are not part of the
current instantiation. Previously, it would look at bases which could be
specialized separately from the current template.
llvm-svn: 168477
would have diagnosed this at instantiation time anyway, if only we
didn't hang on all of these test cases. Fixes <rdar://problem/12629723>
llvm-svn: 167651
"castAs<...>->doSomething()". The analyzer was flagging these
as potential null dereferences, which is technically true. The
invariants appear to be that these casts should never fail, so
let's use castAs<> instead and avoid a runtime check.
llvm-svn: 162468
function within a class hierarchy (C++ [class.virtual]p2).
We use the final-overrider computation to determine when a particular
class is ill-formed because it has multiple final overriders for a
given virtual function (e.g., because two virtual functions override
the same virtual function in the same virtual base class). Fixes
PR5973.
We also use the final-overrider computation to determine which virtual
member functions are pure when determining whether a class is
abstract or diagnosing the improper use of an abstract class. The
prior approach to determining whether there were any pure virtual
functions in a class didn't cope with virtual base class subobjects
properly, and could not easily be fixed to deal with the oddities of
subobject hiding. Fixes PR6631.
llvm-svn: 99351
that are hidden by other derived base subobjects reached along a
lookup path that does *not* pass through the hiding subobject (C++
[class.member.lookup]p6). Fixes PR6462.
llvm-svn: 97640
sugared types. The basic problem is that our qualifier accessors
(getQualifiers, getCVRQualifiers, isConstQualified, etc.) only look at
the current QualType and not at any qualifiers that come from sugared
types, meaning that we won't see these qualifiers through, e.g.,
typedefs:
typedef const int CInt;
typedef CInt Self;
Self.isConstQualified() currently returns false!
Various bugs (e.g., PR5383) have cropped up all over the front end due
to such problems. I'm addressing this problem by splitting each
qualifier accessor into two versions:
- the "local" version only returns qualifiers on this particular
QualType instance
- the "normal" version that will eventually combine qualifiers from this
QualType instance with the qualifiers on the canonical type to
produce the full set of qualifiers.
This commit adds the local versions and switches a few callers from
the "normal" version (e.g., isConstQualified) over to the "local"
version (e.g., isLocalConstQualified) when that is the right thing to
do, e.g., because we're printing or serializing the qualifiers. Also,
switch a bunch of
Context.getCanonicalType(T1).getUnqualifiedType() == Context.getCanonicalType(T2).getQualifiedType()
expressions over to
Context.hasSameUnqualifiedType(T1, T2)
llvm-svn: 88969