anonymous structs to the same Decl in the
ASTImporter, ensure that both are filled in
from their external sources (if present).
Otherwise two different structs may be
identified erroneously.
llvm-svn: 202869
A return type is the declared or deduced part of the function type specified in
the declaration.
A result type is the (potentially adjusted) type of the value of an expression
that calls the function.
Rule of thumb:
* Declarations have return types and parameters.
* Expressions have result types and arguments.
llvm-svn: 200082
Fix a perennial source of confusion in the clang type system: Declarations and
function prototypes have parameters to which arguments are supplied, so calling
these 'arguments' was a stretch even in C mode, let alone C++ where default
arguments, templates and overloading make the distinction important to get
right.
Readability win across the board, especially in the casting, ADL and
overloading implementations which make a lot more sense at a glance now.
Will keep an eye on the builders and update dependent projects shortly.
No functional change.
llvm-svn: 199686
- Remove the additions to ObjCMethodDecl & ObjCIVarDecl that were getting de/serialized and consolidate
all functionality for the checking for this warning in Sema::DiagnoseUnusedBackingIvarInAccessor
- Don't check immediately after the method body is finished, check when the @implementation is finished.
This is so we can see if the ivar was referenced by any other method, even if the method was defined after the accessor.
- Don't silence the warning if any method is called from the accessor silence it if the accessor delegates to another method via self.
rdar://15727325
llvm-svn: 198432
more than one such initializer in a union, make mem-initializers override
default initializers for other union members, handle anonymous unions with
anonymous struct members better. Fix a couple of semi-related bugs exposed by
the tests for same.
llvm-svn: 196892
Summary:
In general, this type node can be used to represent any type adjustment
that occurs implicitly without losing type sugar. The immediate use of
this is to adjust the calling conventions of member function pointer
types without breaking template instantiation.
Fixes PR17996.
Reviewers: rsmith
Differential Revision: http://llvm-reviews.chandlerc.com/D2332
llvm-svn: 196451
would be deleted are still declared, but are ignored by overload resolution.
Also, don't delete such members if a subobject has no corresponding move
operation and a non-trivial copy. This causes us to implicitly declare move
operations in more cases, but risks move-assigning virtual bases multiple
times in some circumstances (a warning for that is to follow).
llvm-svn: 193969
ASTImporter when importing the following types:
typedef struct {
} A;
typedef struct {
A a;
} B;
Suppose we have imported B, but we did not at that
time need to complete it. Then later we want to
import A. The struct is anonymous, so the first
thing we want to do is make sure no other anonymous
struct already matches it. So we set up an
StructuralEquivalenceContext and compare B with A.
This happens at ASTImporter.cpp:2179.
Now, in this scenario, B is not complete. So we go
and import its fields, including a, which causes A
to be imported. The ASTImporter doesn’t yet have A
in its list of already-imported things, so we
import A.
After the StructuralEquivalenceContext is finished
determining that A and B are different, the
ASTImporter concludes that A must be imported
because no equivalent exists, so it imports a second
copy of A. Now we have two different structs
representing A. This is really bad news.
The patch allows the StructuralEquivalenceContext to
use the original version of B when making its
comparison, obviating the need for an import and
cutting this loop.
llvm-svn: 192324
Specifically, the following features are not included in this commit:
- any sort of capturing within generic lambdas
- generic lambdas within template functions and nested
within other generic lambdas
- conversion operator for captureless lambdas
- ensuring all visitors are generic lambda aware
(Although I have gotten some useful feedback on my patches of the above and will be incorporating that as I submit those patches for commit)
As an example of what compiles through this commit:
template <class F1, class F2>
struct overload : F1, F2 {
using F1::operator();
using F2::operator();
overload(F1 f1, F2 f2) : F1(f1), F2(f2) { }
};
auto Recursive = [](auto Self, auto h, auto ... rest) {
return 1 + Self(Self, rest...);
};
auto Base = [](auto Self, auto h) {
return 1;
};
overload<decltype(Base), decltype(Recursive)> O(Base, Recursive);
int num_params = O(O, 5, 3, "abc", 3.14, 'a');
Please see attached tests for more examples.
This patch has been reviewed by Doug and Richard. Minor changes (non-functionality affecting) have been made since both of them formally looked at it, but the changes involve removal of supernumerary return type deduction changes (since they are now redundant, with richard having committed a recent patch to address return type deduction for C++11 lambdas using C++14 semantics).
Some implementation notes:
- Add a new Declarator context => LambdaExprParameterContext to
clang::Declarator to allow the use of 'auto' in declaring generic
lambda parameters
- Add various helpers to CXXRecordDecl to facilitate identifying
and querying a closure class
- LambdaScopeInfo (which maintains the current lambda's Sema state)
was augmented to house the current depth of the template being
parsed (id est the Parser calls Sema::RecordParsingTemplateParameterDepth)
so that SemaType.cpp::ConvertDeclSpecToType may use it to immediately
generate a template-parameter-type when 'auto' is parsed in a generic
lambda parameter context. (i.e we do NOT use AutoType deduced to
a template parameter type - Richard seemed ok with this approach).
We encode that this template type was generated from an auto by simply
adding $auto to the name which can be used for better diagnostics if needed.
- SemaLambda.h was added to hold some common lambda utility
functions (this file is likely to grow ...)
- Teach Sema::ActOnStartOfFunctionDef to check whether it
is being called to instantiate a generic lambda's call
operator, and if so, push an appropriately prepared
LambdaScopeInfo object on the stack.
- various tests were added - but much more will be needed.
There is obviously more work to be done, and both Richard (weakly) and Doug (strongly)
have requested that LambdaExpr be removed form the CXXRecordDecl LambdaDefinitionaData
in a future patch which is forthcoming.
A greatful thanks to all reviewers including Eli Friedman, James Dennett,
and especially the two gracious wizards (Richard Smith and Doug Gregor)
who spent hours providing feedback (in person in Chicago and on the mailing lists).
And yet I am certain that I have allowed unidentified bugs to creep in; bugs, that I will do my best to slay, once identified!
Thanks!
llvm-svn: 191453
Specifically, the following features are not included in this commit:
- any sort of capturing within generic lambdas
- nested lambdas
- conversion operator for captureless lambdas
- ensuring all visitors are generic lambda aware
As an example of what compiles:
template <class F1, class F2>
struct overload : F1, F2 {
using F1::operator();
using F2::operator();
overload(F1 f1, F2 f2) : F1(f1), F2(f2) { }
};
auto Recursive = [](auto Self, auto h, auto ... rest) {
return 1 + Self(Self, rest...);
};
auto Base = [](auto Self, auto h) {
return 1;
};
overload<decltype(Base), decltype(Recursive)> O(Base, Recursive);
int num_params = O(O, 5, 3, "abc", 3.14, 'a');
Please see attached tests for more examples.
Some implementation notes:
- Add a new Declarator context => LambdaExprParameterContext to
clang::Declarator to allow the use of 'auto' in declaring generic
lambda parameters
- Augment AutoType's constructor (similar to how variadic
template-type-parameters ala TemplateTypeParmDecl are implemented) to
accept an IsParameterPack to encode a generic lambda parameter pack.
- Add various helpers to CXXRecordDecl to facilitate identifying
and querying a closure class
- LambdaScopeInfo (which maintains the current lambda's Sema state)
was augmented to house the current depth of the template being
parsed (id est the Parser calls Sema::RecordParsingTemplateParameterDepth)
so that Sema::ActOnLambdaAutoParameter may use it to create the
appropriate list of corresponding TemplateTypeParmDecl for each
auto parameter identified within the generic lambda (also stored
within the current LambdaScopeInfo). Additionally,
a TemplateParameterList data-member was added to hold the invented
TemplateParameterList AST node which will be much more useful
once we teach TreeTransform how to transform generic lambdas.
- SemaLambda.h was added to hold some common lambda utility
functions (this file is likely to grow ...)
- Teach Sema::ActOnStartOfFunctionDef to check whether it
is being called to instantiate a generic lambda's call
operator, and if so, push an appropriately prepared
LambdaScopeInfo object on the stack.
- Teach Sema::ActOnStartOfLambdaDefinition to set the
return type of a lambda without a trailing return type
to 'auto' in C++1y mode, and teach the return type
deduction machinery in SemaStmt.cpp to process either
C++11 and C++14 lambda's correctly depending on the flag.
- various tests were added - but much more will be needed.
A greatful thanks to all reviewers including Eli Friedman,
James Dennett and the ever illuminating Richard Smith. And
yet I am certain that I have allowed unidentified bugs to creep in;
bugs, that I will do my best to slay, once identified!
Thanks!
llvm-svn: 188977
The goal of this sugar node is to be able to look at an arbitrary
FunctionType and tell if any of the parameters were decayed from an
array or function type. Ultimately this is necessary to implement
Microsoft's C++ name mangling scheme, which mangles decayed arrays
differently from normal pointers.
Reviewers: rsmith
Differential Revision: http://llvm-reviews.chandlerc.com/D1014
llvm-svn: 184763
The most common (non-buggy) case are where such objects are used as
return expressions in bool-returning functions or as boolean function
arguments. In those cases I've used (& added if necessary) a named
function to provide the equivalent (or sometimes negative, depending on
convenient wording) test.
DiagnosticBuilder kept its implicit conversion operator owing to the
prevalent use of it in return statements.
One bug was found in ExprConstant.cpp involving a comparison of two
PointerUnions (PointerUnion did not previously have an operator==, so
instead both operands were converted to bool & then compared). A test
is included in test/SemaCXX/constant-expression-cxx1y.cpp for the fix
(adding operator== to PointerUnion in LLVM).
llvm-svn: 181869
This patch renames getLinkage to getLinkageInternal. Only code that
needs to handle UniqueExternalLinkage specially should call this.
Linkage, as defined in the c++ standard, is provided by
getFormalLinkage. It maps UniqueExternalLinkage to ExternalLinkage.
Most places in the compiler actually want isExternallyVisible, which
handles UniqueExternalLinkage as internal.
llvm-svn: 181677
structs are compatible, check whether the fields
of the structs have the same name. This prevents
erroneous coalescing of (in particular) anonymous
structs.
llvm-svn: 180644
http://lab.llvm.org:8011/builders/clang-x86_64-darwin10-gdb went back green
before it processed the reverted 178663, so it could not have been the culprit.
Revert "Revert 178663."
This reverts commit 4f8a3eb2ce5d4ba422483439e20c8cbb4d953a41.
llvm-svn: 178682
For variables and functions clang used to store two storage classes. The one
"as written" in the code and a patched one, which, for example, propagates
static to the following decls.
This apparently is from the days clang lacked linkage computation. It is now
redundant and this patch removes it.
llvm-svn: 178663
consider (sub)module visibility.
The bulk of this change replaces myriad hand-rolled loops over the
linked list of Objective-C categories/extensions attached to an
interface declaration with loops using one of the four new category
iterator kinds:
visible_categories_iterator: Iterates over all visible categories
and extensions, hiding any that have their "hidden" bit set. This is
by far the most commonly used iterator.
known_categories_iterator: Iterates over all categories and
extensions, ignoring the "hidden" bit. This tends to be used for
redeclaration-like traversals.
visible_extensions_iterator: Iterates over all visible extensions,
hiding any that have their "hidden" bit set.
known_extensions_iterator: Iterates over all extensions, whether
they are visible to normal name lookup or not.
The effect of this change is that any uses of the visible_ iterators
will respect module-import visibility. See the new tests for examples.
Note that the old accessors for categories and extensions are gone;
there are *Raw() forms for some of them, for those (few) areas of the
compiler that have to manipulate the linked list of categories
directly. This is generally discouraged.
Part two of <rdar://problem/10634711>.
llvm-svn: 172665
produce a note for that diagnostic either with a different DiagnosticEngine or
after calling DiagnosticEngine::Reset(). That didn't make any sense, and did the
wrong thing if the original diagnostic was suppressed.
llvm-svn: 170636
the cases where we can't determine whether special members would be trivial
while building the class, we eagerly declare those special members. The impact
of this is bounded, since it does not trigger implicit declarations of special
members in classes which merely *use* those classes.
In order to determine whether we need to apply this rule, we also need to
eagerly declare move operations and destructors in cases where they might be
deleted. If a move operation were supposed to be deleted, it would instead
be suppressed, and we could need overload resolution to determine if we fall
back to a trivial copy operation. If a destructor were implicitly deleted,
it would cause the move constructor of any derived classes to be suppressed.
As discussed on cxx-abi-dev, C++11's selected constructor rules are also
retroactively applied as a defect resolution in C++03 mode, in order to
identify that class B has a non-trivial copy constructor (since it calls
A's constructor template, not A's copy constructor):
struct A { template<typename T> A(T &); };
struct B { mutable A a; };
llvm-svn: 169673
properly, rather than faking it up by pretending that a reference member makes
the default constructor non-trivial. That leads to rejects-valids when putting
such types inside unions.
llvm-svn: 169662
uncovered.
This required manually correcting all of the incorrect main-module
headers I could find, and running the new llvm/utils/sort_includes.py
script over the files.
I also manually added quite a few missing headers that were uncovered by
shuffling the order or moving headers up to be main-module-headers.
llvm-svn: 169237
constructor/assignment operator with a const-qualified parameter type. The
prior method for determining this incorrectly used overload resolution.
llvm-svn: 168775
only actually get the answer right if there was only a single
anonymous struct/union at that level. This is part of
<rdar://problem/11904570>; the test will go into LLDB itself.
llvm-svn: 166781