Currently, we create a G_CONSTANT for every "synthetic" integer
constant operand (for instance, for the G_GEP offset).
Instead, share the G_CONSTANTs we might have created by going through
the ValueToVReg machinery.
When we're emitting synthetic constants, we do need to get Constants from
the context. One could argue that we shouldn't modify the context at
all (for instance, this means that we're going to use a tad more memory
if the constant wasn't used elsewhere), but constants are mostly
harmless. We currently do this for extractvalue and all.
For constant fcmp, this does mean we'll emit an extra COPY, which is not
necessarily more optimal than an extra materialized constant.
But that preserves the current intended design of uniqued G_CONSTANTs,
and the rematerialization problem exists elsewhere and should be
resolved with a single coherent solution.
llvm-svn: 297875
Now that we preserve the IR layout, we would end up with all the newly
synthesized switch comparison blocks at the end of the function.
Instead, use a hopefully more reasonable layout, with the comparison
blocks immediately following the switch comparison blocks.
llvm-svn: 297869
It makes the output function layout more predictable; the layout has
an effect on performance, we don't want it to be at the mercy of the
translator's visitation order and such.
The predictable output is also easier to digest.
getOrCreateBB isn't appropriately named anymore, as it never needs to
create anything. Rename it and extract the MBB creation logic out of it.
A couple tests were sensitive to the order. Update them.
llvm-svn: 297868
Summary:
<1 x Ty> is not a legal vector type in LLT, we shouldn’t build G_MERGE_VALUES
instruction for them.
Reviewers: qcolombet, aditya_nandakumar, dsanders, t.p.northover, ab, javed.absar
Reviewed By: qcolombet
Subscribers: dberris, rovka, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D30948
llvm-svn: 297792
We don't need to check whether the fallback path is enabled to return
false. Just do that all the time on error cases, the caller knows (or
at least should know!) how to handle the failing case.
llvm-svn: 297535
Summary: No test case as none of the in-tree targets with GlobalISel support has this condition.
Reviewers: qcolombet, aditya_nandakumar, dsanders, t.p.northover, ab
Reviewed By: qcolombet
Subscribers: dberris, rovka, kristof.beyls, llvm-commits, igorb
Differential Revision: https://reviews.llvm.org/D30786
llvm-svn: 297512
Summary:
We don’t actually use LegalizerInfo in Legalizer pass, it’s just passed
as an argument.
In order to check if an instruction is legal or not, we need to get LegalizerInfo
by calling `MI.getParent()->getParent()->getSubtarget().getLegalizerInfo()`.
Instead, make LegalizerInfo accessible in LegalizerHelper.
Reviewers: qcolombet, aditya_nandakumar, dsanders, ab, t.p.northover, kristof.beyls
Reviewed By: qcolombet
Subscribers: dberris, llvm-commits, rovka
Differential Revision: https://reviews.llvm.org/D30838
llvm-svn: 297491
The good reason to do this is that static allocas are pretty simple to handle
(especially at -O0) and avoiding tracking DBG_VALUEs throughout the pipeline
should give some kind of performance benefit.
The bad reason is that the debug pipeline is an unholy mess of implicit
contracts, where determining whether "DBG_VALUE %reg, imm" actually implies a
load or not involves the services of at least 3 soothsayers and the sacrifice
of at least one chicken. And it still gets it wrong if the variable is at SP
directly.
llvm-svn: 297410
Summary:
This will allow future patches to inspect the details of the LLT. The implementation is now split between
the Support and CodeGen libraries to allow TableGen to use this class without introducing layering concerns.
Thanks to Ahmed Bougacha for finding a reasonable way to avoid the layering issue and providing the version of this patch without that problem.
The problem with the previous commit appears to have been that TableGen was including CodeGen/LowLevelType.h instead of Support/LowLevelTypeImpl.h.
Reviewers: t.p.northover, qcolombet, rovka, aditya_nandakumar, ab, javed.absar
Subscribers: arsenm, nhaehnle, mgorny, dberris, llvm-commits, kristof.beyls
Differential Revision: https://reviews.llvm.org/D30046
llvm-svn: 297241
We were calculating incorrect extract/insert offsets by trying to be too
tricksy with min/max. It's clearer to just split the logic up into "register
starts before this segment" vs "after".
llvm-svn: 297226
Some intrinsics take metadata parameters. These all need custom
handling of some form, and cannot possibly be lowered generically to
G_INTRINSIC calls with vreg operands.
Reject them, instead of hitting an assert later in getOrCreateVReg.
llvm-svn: 297209
When we translate a no-op (same type) bitcast, we try to be clever and
only emit a COPY if we already assigned a vreg to the defined value.
However, when we didn't, we tried to assign to a reference into the
ValToVReg DenseMap, even though the RHS of the assignment
(getOrCreateVReg) could potentially grow that DenseMap, invalidating the
reference.
Avoid that by getting the source vreg first.
I audited the rest of the translator; this is the only tricky case.
The test is quite unwieldy, as the problem is caused by the DenseMap
growing, which happens after the 47th mapped value.
llvm-svn: 297208
For vector operands, the `select` instruction supports both vector and
non-vector conditions. The MIR builder had an overly restrictive
assertion, that only accepted vector conditions for vector selects
(in effect implementing ISD::VSELECT).
Make it possible to express the full range of G_SELECTs.
llvm-svn: 297207
When computing the mapping for non-generic instructions, we skipped
%noreg operands, because we can't always reason about their banks.
Also skip them when applying the mapping. Otherwise, we could end
up with mappings that we can't apply.
While there, duplicate an assert to distinguish between the two
error conditions.
llvm-svn: 297201
When a dbg_value has a constant operand that isn't representable in MI,
there isn't much we can do. Use %noreg (0) for those situations.
This matches the SelectionDAG behavior.
llvm-svn: 297200
More module problems. This time it only showed up in the stage 2 compile of
clang-x86_64-linux-selfhost-modules-2 but not the stage 1 compile.
Somehow, this change causes the build to need Attributes.gen before it's been
generated.
llvm-svn: 297188
Summary:
This will allow future patches to inspect the details of the LLT. The implementation is now split between
the Support and CodeGen libraries to allow TableGen to use this class without introducing layering concerns.
Thanks to Ahmed Bougacha for finding a reasonable way to avoid the layering issue and providing the version of this patch without that problem.
Reviewers: t.p.northover, qcolombet, rovka, aditya_nandakumar, ab, javed.absar
Subscribers: arsenm, nhaehnle, mgorny, dberris, llvm-commits, kristof.beyls
Differential Revision: https://reviews.llvm.org/D30046
llvm-svn: 297177
A bit more painful than G_INSERT because it was more widely used, but this
should simplify the handling of extract operations in most locations.
llvm-svn: 297100
Before, we were producing G_INSERT instructions that were actually closer to a
cast or even a COPY when both input and output sizes are the same. This doesn't
really make sense and means that everything interpreting a G_INSERT also has to
handle all these kinds of casts.
So now we detect these degenerate cases and emit real casts instead.
llvm-svn: 297051
Now that G_INSERT instructions can only insert one register, this code was
overly general. In another direction it didn't handle registers that crossed
split boundaries properly, which needed to be fixed.
llvm-svn: 297042
These are simplified variants of the current G_SEQUENCE and G_EXTRACT, which
assume the individual parts will be contiguous, homogeneous, and occupy the
entirity of the larger register. This makes reasoning about them much easer
since you only have to look at the first register being merged and the result
to know what the instruction is doing.
I intend to gradually replace all uses of the more complicated sequence/extract
with these (or single-element insert/extracts), and then remove the older
variants. For now we start with legalization.
llvm-svn: 296921
Iterating on the use-list we're modifying doesn't work: after the first
iteration, the use-list iterator will point to a MachineOperand
referencing the new register. This caused us to skip the other uses to
replace.
Instead, use MRI.replaceRegWith(), which accounts for this behavior.
llvm-svn: 296551
Summary:
This will allow future patches to inspect the details of the LLT. The implementation is now split between
the Support and CodeGen libraries to allow TableGen to use this class without introducing layering concerns.
Thanks to Ahmed Bougacha for finding a reasonable way to avoid the layering issue and providing the version of this patch without that problem.
Reviewers: t.p.northover, qcolombet, rovka, aditya_nandakumar, ab, javed.absar
Subscribers: arsenm, nhaehnle, mgorny, dberris, llvm-commits, kristof.beyls
Differential Revision: https://reviews.llvm.org/D30046
llvm-svn: 296474
All G_CONSTANTS created by the MachineIRBuilder have an operand of type CImm
(i.e. a ConstantInt), so that's what the selector needs to look for.
llvm-svn: 296176
Summary:
This isn't testable for AArch64 by itself so this patch also adds
support for constant immediates in the pattern and physical
register uses in the result.
The new IntOperandMatcher matches the constant in patterns such as
'(set $rd:GPR32, (G_XOR $rs:GPR32, -1))'. It's always safe to fold
immediates into an instruction so this is the first rule that will match
across multiple BB's.
The Renderer hierarchy is responsible for adding operands to the result
instruction. Renderers can copy operands (CopyRenderer) or add physical
registers (in particular %wzr and %xzr) to the result instruction
in any order (OperandMatchers now import the operand names from
SelectionDAG to allow renderers to access any operand). This allows us to
emit the result instruction for:
%1 = G_XOR %0, -1 --> %1 = ORNWrr %wzr, %0
%1 = G_XOR -1, %0 --> %1 = ORNWrr %wzr, %0
although the latter is untested since the matcher/importer has not been
taught about commutativity yet.
Added BuildMIAction which can build new instructions and mutate them where
possible. W.r.t the mutation aspect, MatchActions are now told the name of
an instruction they can recycle and BuildMIAction will emit mutation code
when the renderers are appropriate. They are appropriate when all operands
are rendered using CopyRenderer and the indices are the same as the matcher.
This currently assumes that all operands have at least one matcher.
Finally, this change also fixes a crash in
AArch64InstructionSelector::select() caused by an immediate operand
passing isImm() rather than isCImm(). This was uncovered by the other
changes and was detected by existing tests.
Depends on D29711
Reviewers: t.p.northover, ab, qcolombet, rovka, aditya_nandakumar, javed.absar
Reviewed By: rovka
Subscribers: aemerson, dberris, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D29712
llvm-svn: 296131
We were stopping the translation of the parent block when the
translation of an instruction failed, but we were still trying to
translate the other blocks of the parent function.
Don't do that.
llvm-svn: 296047
Having more fine-grained information on the specific construct that
caused us to fallback is valuable for large-scale data collection.
We still have the fallback warning, that's also used for FastISel.
We still need to remove the fallback warning, and teach FastISel to also
emit remarks (it currently has a combination of the warning, stats, and
debug prints: the remarks could unify all three).
The abort-on-fallback path could also be better handled using remarks:
one could imagine a "-Rpass-error", analoguous to "-Werror", which would
promote missed/failed remarks to errors. It's not clear whether that
would be useful for other remarks though, so we're not there yet.
llvm-svn: 296013
For the hard float calling convention, we just use the D registers.
For the soft-fp calling convention, we use the R registers and move values
to/from the D registers by means of G_SEQUENCE/G_EXTRACT. While doing so, we
make sure to honor the endianness of the target, since the CCAssignFn doesn't do
that for us.
For pure soft float targets, we still bail out because we don't support the
libcalls yet.
llvm-svn: 295295
Uses a Custom implementation because the slot sizes being a multiple of the
pointer size isn't really universal, even for the architectures that do have a
simple "void *" va_list.
llvm-svn: 295255
This instruction clears the low bits of a pointer without requiring (possibly
dodgy if pointers aren't ints) conversions to and from an integer. Since (as
far as I'm aware) all masks are statically known, the instruction takes an
immediate operand rather than a register to specify the mask.
llvm-svn: 295103
It'll usually be immediately legalized back to a libcall, but occasionally
something can be done with it so we'd just as well enable that flexibility from
the start.
llvm-svn: 294530
AArch64 has specific instructions to multiply two numbers at double the width
and produce the high part of the result. These can be used to implement LLVM's
mul.with.overflow instructions fairly simply. Helps with C++ operator new[].
llvm-svn: 294519
We don't handle all cases yet (see arm64-fallback.ll for an example), but this
is enough to cover most common C++ code so it's a good place to start.
llvm-svn: 294247
Well, sort of. But the lower-level code that invoke used to be using completely
botched the handling of varargs functions, which hopefully won't be possible if
they're using the same code.
llvm-svn: 293670
For some reason the exception selector register must be a pointer (that's
assumed by SDag); on the other hand, it gets moved into an IR-level type which
might be entirely different (i32 on AArch64). IRTranslator needs to be aware of
this.
llvm-svn: 293546
To simplify/clarify memory ownership, make leaks (as one was found/fixed
recently) harder to write, etc.
(also, while I was there - removed a duplicate lookup in a container)
llvm-svn: 293506
When the OperandsMapper creates virtual registers, it used to just create
plain scalar register with the right size. This may confuse the
instruction selector because we lose the information of the instruction
using those registers what supposed to do. The MachineVerifier complains
about that already.
With this patch, the OperandsMapper still creates plain scalar register,
but the expectation is for the mapping function to remap the type
properly. The default mapping function has been updated to do that.
rdar://problem/30231850
llvm-svn: 293362
We had various variants of defining dump() functions in LLVM. Normalize
them (this should just consistently implement the things discussed in
http://lists.llvm.org/pipermail/cfe-dev/2014-January/034323.html
For reference:
- Public headers should just declare the dump() method but not use
LLVM_DUMP_METHOD or #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- The definition of a dump method should look like this:
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void MyClass::dump() {
// print stuff to dbgs()...
}
#endif
llvm-svn: 293359
We have to delete the block manually or it leaks. That triggers failures in
-fsanitize=leak bots (unsurprisingly), which should be fixed by this patch.
llvm-svn: 293347
The translation scheme is mostly cribbed from FastISel, and it's not entirely
convincing semantically. But it does seem to work in the common cases and allow
variables to be printed so it can't be all wrong.
llvm-svn: 293228
Looks like our cmake goop for handling .inc->td dependencies doesn't
track the .td files.
This manifests as cmake complaining about missing files since r293009.
Force a rerun to avoid that.
llvm-svn: 293012
There was a bug here where we were using p0 instead of s32 for the
selector type in the landingpad. Instead of hardcoding these types we
should get the types from the landingpad instruction directly.
Note that we replicate an assert from SDAG here to only support
two-valued landingpads.
llvm-svn: 292995
Since we're now avoiding operations using narrow scalar integer types,
we have to legalize the integer side of the FP conversions.
This requires teaching the legalizer how to do that.
llvm-svn: 292828
Translating the constant can create more VRegs, which can invalidate the
reference into the DenseMap. So we have to look up the value again after all
that's happened.
llvm-svn: 292675
It's easier to test the non-fallback path if we just drop these
intrinsics for now, like we did before we added the fallback path.
We'll obviously need to fix this properly, but the fixme for that is
already here.
llvm-svn: 292547
Rather than trying to find MF based on the possibly-null MI we've
passed in here, just pass it in directly. It's already available at
all callers anyway.
llvm-svn: 292544
Summary:
Adds a RegisterBank tablegen class that can be used to declare the register
banks and an associated tablegen pass to generate the necessary code.
Changes since first commit attempt:
* Added missing guards
* Added more missing guards
* Found and fixed a use-after-free bug involving Twine locals
Reviewers: t.p.northover, ab, rovka, qcolombet
Reviewed By: qcolombet
Subscribers: aditya_nandakumar, rengolin, kristof.beyls, vkalintiris, mgorny, dberris, llvm-commits, rovka
Differential Revision: https://reviews.llvm.org/D27338
llvm-svn: 292478
Summary:
Adds a RegisterBank tablegen class that can be used to declare the register
banks and an associated tablegen pass to generate the necessary code.
Changes since last commit:
The new tablegen pass is now correctly guarded by LLVM_BUILD_GLOBAL_ISEL and
this should fix the buildbots however it may not be the whole fix. The previous
buildbot failures suggest there may be a memory bug lurking that I'm unable to
reproduce (including when using asan) or spot in the source. If they re-occur
on this commit then I'll need assistance from the bot owners to track it down.
Reviewers: t.p.northover, ab, rovka, qcolombet
Reviewed By: qcolombet
Subscribers: aditya_nandakumar, rengolin, kristof.beyls, vkalintiris, mgorny, dberris, llvm-commits, rovka
Differential Revision: https://reviews.llvm.org/D27338
llvm-svn: 292367
Some platforms (notably iOS) use a different calling convention for unnamed vs
named parameters in varargs functions, so we need to keep track of this
information when translating calls.
Since not many platforms are involved, the guts of the special handling is in
the ValueHandler class (with a generic implementation that should work for most
targets).
llvm-svn: 292283