Summary:
The example code makes it clear that this is a much better design
decision.
Reviewers: jlebar
Subscribers: jprice, parallel_libs-commits
Differential Revision: https://reviews.llvm.org/D24142
llvm-svn: 280397
This correctly connects compiler-rt-test-depends to test-depends and
check-compiler-rt to check-all.
Based on LLVM r280392, and Compiler-RT r280393.
llvm-svn: 280394
My previous attempt at this connected the sub-project check targets to the test-depends target instead of to the check-all target. That resulted in the tests running multiple times on bots that built "test-depends" and "check-all" in separate build invocations.
llvm-svn: 280392
This patch moves the allocation of VectorParts for PHI nodes into the actual
PHI widening code. Previously, we allocated these VectorParts in
vectorizeBlockInLoop, and passed them by reference to widenPHIInstruction. Upon
returning, we would then map the VectorParts in VectorLoopValueMap. This
behavior is problematic for the cases where we only want to generate a scalar
version of a PHI node. For example, if in the future we only generate a scalar
version of an induction variable, we would end up inserting an empty vector
entry into the map once we return to vectorizeBlockInLoop. We now no longer
need to pass VectorParts to the various PHI widening functions, and we can keep
VectorParts allocation as close as possible to the point at which they are
actually mapped in VectorLoopValueMap.
llvm-svn: 280390
Legalization tends to create anyext(trunc) patterns. This should always be
combined - into either a single trunc, a single ext, or nothing if the
types match exactly. But if we happen to combine the trunc first, we may pull
the trunc away from the anyext or make it implicit (e.g. the truncate(extract)
-> extract(bitcast) fold).
To prevent this, we can avoid doing the fold, similarly to how we already handle
fpround(fpextend).
Differential Revision: https://reviews.llvm.org/D23893
llvm-svn: 280386
Summary:
Created a new td file MIMGInstructions.td which contains all definitions
of MIMG related instructions.
Reviewed by:
kzhuravl, vpykhtin
Differential Revision:
http://reviews.llvm.org/D24106
llvm-svn: 280385
Apparently nobody evaluated multiprocessing on Windows since Daniel
enabled multiprocessing on Unix in r193279. It works so far as I can
tell.
Today this is worth about an 8x speedup (631.29s to 73.25s) on my 24
core Windows machine. Hopefully this will improve Windows buildbot cycle
time, where currently it takes more time to run check-all than it does
to self-host with assertions enabled:
http://lab.llvm.org:8011/builders/clang-x86-windows-msvc2015/builds/20
build stage 2 ninja all ( 28 mins, 22 secs )
ninja check 2 stage 2 ( 37 mins, 38 secs )
llvm-svn: 280382
This is a partial revert of r280013. Brad King pointed out these variable names are matching CMake conventions, so we should preserve them.
I've also added a direct mapping of the LLVM_*_DIR variables which we need to make projects support building in and out of tree.
llvm-svn: 280380
Previous change broke the C API for creating an EarlyCSE pass w/
MemorySSA by adding a bool parameter to control whether MemorySSA was
used or not. This broke the OCaml bindings. Instead, change the old C
API entry point back and add a new one to request an EarlyCSE pass with
MemorySSA.
llvm-svn: 280379
There was an invalid entry in the sanitizer list, remove it. This has no effect
on the building, just removes the definition of a cached variable.
llvm-svn: 280378
This scheduler describes a processor which covers all MIPS ISAs based
around the interAptiv and P5600 timings.
Reviewers: vkalintiris, dsanders
Differential Revision: https://reviews.llvm.org/D23551
llvm-svn: 280374
Another CFG optimisation patch (280364) has broken bad profile tests, and this
is a similar attempt to fix the test without changing the semantics.
llvm-svn: 280373
While removing a scalar shackle from an icmp fold, I noticed that I couldn't find any tests to trigger
this code path.
The 'and' shrinking transform should be handled by InstCombiner::foldCastedBitwiseLogic()
or eliminated with InstSimplify. The icmp narrowing is part of InstCombiner::foldICmpWithCastAndCast().
Differential Revision: https://reviews.llvm.org/D24031
llvm-svn: 280370
This patch also introduces AnalysisOrderChecker which is intended for testing
of callback call correctness.
Differential Revision: https://reviews.llvm.org/D23804
llvm-svn: 280367
This is what InputSectionBase<ELFT>::relocate does and we need to be
consistent. The other option would be to be more explicit about which
relocations are signed and which are not, and sign extend only when
appropriated. That would require extending the target interface.
llvm-svn: 280366
Commit r280364 has introduced some call-graph optmisations making a profiler
test "fail" due to not expecting the compiler to be "smart", and fold constants
across functions. This commit works around the issue, leaving the origial
semantics intact.
llvm-svn: 280365
This was a real restriction in the original version of SinkIfThenCodeToEnd. Now it's been rewritten, the restriction can be lifted.
As part of this, we handle a very common and useful case where one of the incoming branches is actually conditional. Consider:
if (a)
x(1);
else if (b)
x(2);
This produces the following CFG:
[if]
/ \
[x(1)] [if]
| | \
| | \
| [x(2)] |
\ | /
[ end ]
[end] has two unconditional predecessor arcs and one conditional. The conditional refers to the implicit empty 'else' arc. This same pattern can also be caused by an empty default block in a switch.
We can't sink the call to x() down to end because no call to x() happens on the third incoming arc (assume that x() has sideeffects for the sake of argument; if something is safe to speculate we could indeed sink nevertheless but this cannot happen in the general case and causes many extra selects).
We are now able to detect this case and split off the unconditional arcs to a common successor:
[if]
/ \
[x(1)] [if]
| | \
| | \
| [x(2)] |
\ / |
[sink.split] |
\ /
[ end ]
Now we can sink the call to x() into %sink.split. This can cause significant code simplification in many testcases.
llvm-svn: 280364
The abort() test wasn't copied over (original case 22). This is because
it doesn't work on OS X.
If theres no buildbot problem with this test later today, I will
minimize the Linux version.
llvm-svn: 280361
Some FileIDs that may be used by PlistDiagnostics were not added while building
a list of pieces. This caused assertion violation in GetFID() function.
This patch adds some missing FileIDs to avoid the assertion. It also contains
small refactoring of PlistDiagnostics::FlushDiagnosticsImpl().
Patch by Aleksei Sidorin, Ilya Palachev.
Differential Revision: https://reviews.llvm.org/D22090
llvm-svn: 280360
If an attribute name has special characters such as '\01', it is not
properly printed in LLVM assembly language format. Since the format
expects the special characters are printed as it is, it has to contain
escape characters to make it printable.
Before:
attributes #0 = { ... "counting-function"="^A__gnu_mcount_nc" ...
After:
attributes #0 = { ... "counting-function"="\01__gnu_mcount_nc" ...
Reviewers: hfinkel, rengolin, rjmccall, compnerd
Subscribers: nemanjai, mcrosier, hans, shenhan, majnemer, llvm-commits
Differential Revision: https://reviews.llvm.org/D23792
llvm-svn: 280357
Summary:
This is a Minidump parsing code.
There are still some more structures/data streams that need to be added.
The aim ot this is to be used in the implementation of
a minidump debugging plugin that works on all platforms/architectures.
Currently we have a windows-only plugin that uses the WinAPI to parse
the dump files.
Also added unittests for the current functionality.
Reviewers: labath, amccarth
Subscribers: tberghammer, danalbert, srhines, lldb-commits, dschuff
Differential Revision: https://reviews.llvm.org/D23545
llvm-svn: 280356
Since some profiling tools, such as gprof, ftrace, and uftrace, use
-pg option to generate a mcount function call at the entry of each
function. Function invocation can be detected by this hook function.
But mcount insertion is done before function inlining phase in clang,
sometime a function that already has a mcount call can be inlined in the
middle of another function.
This patch adds an attribute "counting-function" to each function
rather than emitting the mcount call directly in frontend so that this
attribute can be processed in backend. Then the mcount calls can be
properly inserted in backend after all the other optimizations are
completed.
Link: https://llvm.org/bugs/show_bug.cgi?id=28660
Reviewers: hans, rjmccall, hfinkel, rengolin, compnerd
Subscribers: shenhan, cfe-commits
Differential Revision: https://reviews.llvm.org/D22666
llvm-svn: 280355
r279460 rewrote this function to be able to handle more than two incoming edges and took pains to ensure this didn't regress anything.
This time we change the logic for determining if an instruction should be sunk. Previously we used a single pass greedy algorithm - sink instructions until one requires more than one PHI node or we run out of instructions to sink.
This had the problem that sinking instructions that had non-identical but trivially the same operands needed extra logic so we sunk them aggressively. For example:
%a = load i32* %b %d = load i32* %b
%c = gep i32* %a, i32 0 %e = gep i32* %d, i32 1
Sinking %c and %e would naively require two PHI merges as %a != %d. But the loads are obviously equivalent (and maybe can't be hoisted because there is no common predecessor).
This is why we implemented the fairly complex function areValuesTriviallySame(), to look through trivial differences like this. However it's just not clever enough.
Instead, throw areValuesTriviallySame away, use pointer equality to check equivalence of operands and switch to a two-stage algorithm.
In the "scan" stage, we look at every sinkable instruction in isolation from end of block to front. If it's sinkable, we keep track of all operands that required PHI merging.
In the "sink" stage, we iteratively sink the last non-terminator in the source blocks. But when calculating how many PHIs are actually required to be inserted (to work out if we should stop or not) we remove any values that have already been sunk from the set of PHI-merges required, which allows us to be more aggressive.
This turns an algorithm with potentially recursive lookahead (looking through GEPs, casts, loads and any other instruction potentially not CSE'd) to two linear scans.
llvm-svn: 280351
LLVM has an @llvm.eh.dwarf.cfa intrinsic, used to lower the GCC-compatible
__builtin_dwarf_cfa() builtin. As pointed out in PR26761, this is currently
broken on PowerPC (and likely on ARM as well). Currently, @llvm.eh.dwarf.cfa is
lowered using:
ADD(FRAMEADDR, FRAME_TO_ARGS_OFFSET)
where FRAME_TO_ARGS_OFFSET defaults to the constant zero. On x86,
FRAME_TO_ARGS_OFFSET is lowered to 2*SlotSize. This setup, however, does not
work for PowerPC. Because of the way that the stack layout works, the canonical
frame address is not exactly (FRAMEADDR + FRAME_TO_ARGS_OFFSET) on PowerPC
(there is a lower save-area offset as well), so it is not just a matter of
implementing FRAME_TO_ARGS_OFFSET for PowerPC (unless we redefine its
semantics -- We can do that, since it is currently used only for
@llvm.eh.dwarf.cfa lowering, but the better to directly lower the CFA construct
itself (since it can be easily represented as a fixed-offset FrameIndex)). Mips
currently does this, but by using a custom lowering for ADD that specifically
recognizes the (FRAMEADDR, FRAME_TO_ARGS_OFFSET) pattern.
This change introduces a ISD::EH_DWARF_CFA node, which by default expands using
the existing logic, but can be directly lowered by the target. Mips is updated
to use this method (which simplifies its implementation, and I suspect makes it
more robust), and updates PowerPC to do the same.
Fixes PR26761.
Differential Revision: https://reviews.llvm.org/D24038
llvm-svn: 280350
Previously we used LayoutInputSection class to correctly assign
symbols defined in linker script. This patch removes it and uses
pointer to preceding input section in SymbolAssignment class instead.
Differential revision: https://reviews.llvm.org/D23661
llvm-svn: 280348
As discussed in https://reviews.llvm.org/D22666, our current mechanism to
support -pg profiling, where we insert calls to mcount(), or some similar
function, is fundamentally broken. We insert these calls in the frontend, which
means they get duplicated when inlining, and so the accumulated execution
counts for the inlined-into functions are wrong.
Because we don't want the presence of these functions to affect optimizaton,
they should be inserted in the backend. Here's a pass which would do just that.
The knowledge of the name of the counting function lives in the frontend, so
we're passing it here as a function attribute. Clang will be updated to use
this mechanism.
Differential Revision: https://reviews.llvm.org/D22825
llvm-svn: 280347
initializers not being in the same order as the members.
Specifically, 'preg' is the first member followed by 'error', so they
will be initialized in that order and should be written in the member
initializer list in that order.
For the constructor in question, there is no change in behavior.
llvm-svn: 280345
the test fails for a very prosaic reason: `(const char *)0x1000` returns "4096" on x86_64 and
"1000" (without the "0x") on i386. I haven't tried other 32-bit arches, but I am guessing the
behaviour is the same. XFAIL until someone can get a chance to look at this.
llvm-svn: 280344
We iterate over the result from SafeToMergeTerminators, so make it a SmallSetVector instead of a SmallPtrSet.
Should fix stage3 convergence builds.
llvm-svn: 280342