As it turns out, whether we zero-extend or sign-extend i8/i16 constants, which
are illegal types promoted to i32 on PowerPC, is a choice constrained by
assumptions within the infrastructure. Specifically, the logic in
FunctionLoweringInfo::ComputePHILiveOutRegInfo assumes that constant PHI
operands will be zero extended, and so, at least when materializing constants
that are PHI operands, we must do the same.
The rest of our fast-isel implementation does not appear to depend on the fact
that we were sign-extending i8/i16 constants, and all other targets also appear
to zero-extend small-bitwidth constants in fast-isel; we'll now do the same (we
had been doing this only for i1 constants, and sign-extending the others).
Fixes PR27721.
llvm-svn: 280614
When we have an offset into a global, etc. that is accessed relative to the TOC
base pointer, and the offset is larger than the minimum alignment of the global
itself and the TOC base pointer (which is 8-byte aligned), we can still fold
the @toc@ha into the memory access, but we must update the addis instruction's
symbol reference with the offset as the symbol addend. When there is only one
use of the addi to be folded and only one use of the addis that would need its
symbol's offset adjusted, then we can make the adjustment and fold the @toc@l
into the memory access.
llvm-svn: 280545
As Sanjay suggested when he added the hook, PPC should return true from
hasAndNotCompare. We have an efficient negated 'and' on PPC (which can feed a
compare).
Fixes PR27203.
llvm-svn: 280457
Following a suggestion by Sanjay, we should lower:
%shl = shl i32 1, %y
%and = and i32 %x, %shl
%cmp = icmp eq i32 %and, %shl
ret i1 %cmp
into:
subfic r4, r4, 32
rlwnm r3, r3, r4, 31, 31
Add this pattern and some associated patterns for the 64-bit case and the
not-equal case. Fixes PR27356.
llvm-svn: 280454
When applying our address-formation PPC64 peephole, we are reusing the @ha TOC
addis value with the low parts associated with different offsets (i.e.
different effective symbol addends). We were assuming this was okay so long as
the offsets were less than the alignment of the global variable being accessed.
This ignored the fact, however, that the TOC base pointer itself need only be
8-byte aligned. As a result, what we were doing is legal only for offsets less
than 8 regardless of the alignment of the object being accessed.
Fixes PR28727.
llvm-svn: 280441
The logic in this function assumes that the P8 supports fusion of addis/addi,
but it does not. As a result, there is no advantage to restricting our peephole
application, merging addi instructions into dependent memory accesses, even
when the addi has multiple users, regardless of whether or not we're optimizing
for size.
We might need something like this again for the P9; I suspect we'll revisit
this code when we work on P9 tuning.
llvm-svn: 280440
LLVM has an @llvm.eh.dwarf.cfa intrinsic, used to lower the GCC-compatible
__builtin_dwarf_cfa() builtin. As pointed out in PR26761, this is currently
broken on PowerPC (and likely on ARM as well). Currently, @llvm.eh.dwarf.cfa is
lowered using:
ADD(FRAMEADDR, FRAME_TO_ARGS_OFFSET)
where FRAME_TO_ARGS_OFFSET defaults to the constant zero. On x86,
FRAME_TO_ARGS_OFFSET is lowered to 2*SlotSize. This setup, however, does not
work for PowerPC. Because of the way that the stack layout works, the canonical
frame address is not exactly (FRAMEADDR + FRAME_TO_ARGS_OFFSET) on PowerPC
(there is a lower save-area offset as well), so it is not just a matter of
implementing FRAME_TO_ARGS_OFFSET for PowerPC (unless we redefine its
semantics -- We can do that, since it is currently used only for
@llvm.eh.dwarf.cfa lowering, but the better to directly lower the CFA construct
itself (since it can be easily represented as a fixed-offset FrameIndex)). Mips
currently does this, but by using a custom lowering for ADD that specifically
recognizes the (FRAMEADDR, FRAME_TO_ARGS_OFFSET) pattern.
This change introduces a ISD::EH_DWARF_CFA node, which by default expands using
the existing logic, but can be directly lowered by the target. Mips is updated
to use this method (which simplifies its implementation, and I suspect makes it
more robust), and updates PowerPC to do the same.
Fixes PR26761.
Differential Revision: https://reviews.llvm.org/D24038
llvm-svn: 280350
As discussed in https://reviews.llvm.org/D22666, our current mechanism to
support -pg profiling, where we insert calls to mcount(), or some similar
function, is fundamentally broken. We insert these calls in the frontend, which
means they get duplicated when inlining, and so the accumulated execution
counts for the inlined-into functions are wrong.
Because we don't want the presence of these functions to affect optimizaton,
they should be inserted in the backend. Here's a pass which would do just that.
The knowledge of the name of the counting function lives in the frontend, so
we're passing it here as a function attribute. Clang will be updated to use
this mechanism.
Differential Revision: https://reviews.llvm.org/D22825
llvm-svn: 280347
When a function contains something, such as inline asm, which explicitly
clobbers the register used as the frame pointer, don't spill it twice. If we
need a frame pointer, it will be saved/restored in the prologue/epilogue code.
Explicitly spilling it again will reuse the same spill slot used by the
prologue/epilogue code, thus clobbering the saved value. The same applies
to the base-pointer or PIC-base register.
Partially fixes PR26856. Thanks to Ulrich for his analysis and the small
inline-asm reproducer.
llvm-svn: 280188
Implement Bill's suggested fix for 32-bit targets for PR22711 (for the
alignment of each entry). As pointed out in the bug report, we could just force
the section alignment, since we only add pointer-sized things currently, but
this fix is somewhat more future-proof.
llvm-svn: 280049
The "long call" option forces the use of the indirect calling sequence for all
calls (even those that don't really need it). GCC provides this option; This is
helpful, under certain circumstances, for building very-large binaries, and
some other specialized use cases.
Fixes PR19098.
llvm-svn: 280040
For little-Endian PowerPC, we generally target only P8 and later by default.
However, generic (older) 64-bit configurations are still an option, and in that
case, partword atomics are not available (e.g. stbcx.). To lower i8/i16 atomics
without true i8/i16 atomic operations, we emulate using i32 atomics in
combination with a bunch of shifting and masking, etc. The amount by which to
shift in little-Endian mode is different from the amount in big-Endian mode (it
is inverted -- meaning we can leave off the xor when computing the amount).
Fixes PR22923.
llvm-svn: 280022
Rename AllVRegsAllocated to NoVRegs. This avoids the connotation of
running after register and simply describes that no vregs are used in
a machine function. With that we can simply compute the property and do
not need to dump/parse it in .mir files.
Differential Revision: http://reviews.llvm.org/D23850
llvm-svn: 279698
tracksSubRegLiveness only depends on the Subtarget and a cl::opt, there
is not need to change it or save/parse it in a .mir file.
Make the field const and move the initialization LiveIntervalAnalysis to the
MachineRegisterInfo constructor. Also cleanup some code and fix some
instances which better use MachineRegisterInfo::subRegLivenessEnabled() instead
of TargetSubtargetInfo::enableSubRegLiveness().
llvm-svn: 279676
Specifying isSSA is an extra line at best and results in invalid MI at
worst. Compute the value instead.
Differential Revision: http://reviews.llvm.org/D22722
llvm-svn: 279600
The ppc64 multistage bot fails on this.
This reverts commit r279124.
Also Revert "CodeGen: Add/Factor out LiveRegUnits class; NFCI" because it depends on the previous change
This reverts commit r279171.
llvm-svn: 279199
The following function currently relies on tail-merging for if
conversion to succeed. The common tail of cond_true and cond_false is
extracted, and this then forms a diamond pattern that can be
successfully if converted.
If this block does not get extracted, either because tail-merging is
disabled or the threshold is higher, we should still recognize this
pattern and if-convert it.
Fixed a regression in the original commit. Need to un-reverse branches after
reversing them, or other conversions go awry.
Regression on self-hosting bots with no obvious explanation. Tidied up range
handling to be more obviously correct, but there was no smoking gun.
define i32 @t2(i32 %a, i32 %b) nounwind {
entry:
%tmp1434 = icmp eq i32 %a, %b ; <i1> [#uses=1]
br i1 %tmp1434, label %bb17, label %bb.outer
bb.outer: ; preds = %cond_false, %entry
%b_addr.021.0.ph = phi i32 [ %b, %entry ], [ %tmp10, %cond_false ]
%a_addr.026.0.ph = phi i32 [ %a, %entry ], [ %a_addr.026.0, %cond_false ]
br label %bb
bb: ; preds = %cond_true, %bb.outer
%indvar = phi i32 [ 0, %bb.outer ], [ %indvar.next, %cond_true ]
%tmp. = sub i32 0, %b_addr.021.0.ph
%tmp.40 = mul i32 %indvar, %tmp.
%a_addr.026.0 = add i32 %tmp.40, %a_addr.026.0.ph
%tmp3 = icmp sgt i32 %a_addr.026.0, %b_addr.021.0.ph
br i1 %tmp3, label %cond_true, label %cond_false
cond_true: ; preds = %bb
%tmp7 = sub i32 %a_addr.026.0, %b_addr.021.0.ph
%tmp1437 = icmp eq i32 %tmp7, %b_addr.021.0.ph
%indvar.next = add i32 %indvar, 1
br i1 %tmp1437, label %bb17, label %bb
cond_false: ; preds = %bb
%tmp10 = sub i32 %b_addr.021.0.ph, %a_addr.026.0
%tmp14 = icmp eq i32 %a_addr.026.0, %tmp10
br i1 %tmp14, label %bb17, label %bb.outer
bb17: ; preds = %cond_false, %cond_true, %entry
%a_addr.026.1 = phi i32 [ %a, %entry ], [ %tmp7, %cond_true ], [ %a_addr.026.0, %cond_false ]
ret i32 %a_addr.026.1
}
Without tail-merging or diamond-tail if conversion:
LBB1_1: @ %bb
@ =>This Inner Loop Header: Depth=1
cmp r0, r1
ble LBB1_3
@ BB#2: @ %cond_true
@ in Loop: Header=BB1_1 Depth=1
subs r0, r0, r1
cmp r1, r0
it ne
cmpne r0, r1
bgt LBB1_4
LBB1_3: @ %cond_false
@ in Loop: Header=BB1_1 Depth=1
subs r1, r1, r0
cmp r1, r0
bne LBB1_1
LBB1_4: @ %bb17
bx lr
With diamond-tail if conversion, but without tail-merging:
@ BB#0: @ %entry
cmp r0, r1
it eq
bxeq lr
LBB1_1: @ %bb
@ =>This Inner Loop Header: Depth=1
cmp r0, r1
ite le
suble r1, r1, r0
subgt r0, r0, r1
cmp r1, r0
bne LBB1_1
@ BB#2: @ %bb17
bx lr
llvm-svn: 279168
Re-apply r276044 with off-by-1 instruction fix for the reload placement.
This is a variant of scavengeRegister() that works for
enterBasicBlockEnd()/backward(). The benefit of the backward mode is
that it is not affected by incomplete kill flags.
This patch also changes
PrologEpilogInserter::doScavengeFrameVirtualRegs() to use the register
scavenger in backwards mode.
Differential Revision: http://reviews.llvm.org/D21885
llvm-svn: 279124
This is a quick work around, because in some cases, e.g. caller's stack
size > callee's stack size, we are still able to apply sibling call
optimization even callee has any byval arg.
This patch fix: https://llvm.org/bugs/show_bug.cgi?id=28328
Reviewers: hfinkel kbarton nemanjai amehsan
Subscribers: hans, tjablin
https://reviews.llvm.org/D23441
llvm-svn: 278900
If AnalyzeBranch can't analyze a block and it is possible to
fallthrough, then duplicating the block doesn't make sense, as only one
block can be the layout predecessor for the un-analyzable fallthrough.
Submitted wit a test case, but NOTE: the test case doesn't currently
fail. However, the test case fails with D20505 and would have saved me
some time debugging.
llvm-svn: 278866
If AnalyzeBranch can't analyze a block and it is possible to
fallthrough, then duplicating the block doesn't make sense, as only one
block can be the layout predecessor for the un-analyzable fallthrough.
Submitted wit a test case, but NOTE: the test case doesn't currently
fail. However, the test case fails with D20505 and would have saved me
some time debugging.
llvm-svn: 278288
There were two locations where fast-isel would generate a LFD instruction
with a target register class VSFRC instead of F8RC when VSX was enabled.
This can ccause invalid registers to be used in certain cases, like:
lfd 36, ...
instead of using a VSX load instruction. The wrong register number gets
silently truncated, causing invalid code to be generated.
The first place is PPCFastISel::PPCEmitLoad, which had multiple problems:
1.) The IsVSSRC and IsVSFRC flags are not initialized correctly, since they
are computed from resultReg, which is still zero at this point in many cases.
Fixed by changing the helper routines to operate on a register class instead
of a register and passing in UseRC.
2.) Even with this fixed, Is64VSXLoad is still wrong due to a typo:
bool Is32VSXLoad = IsVSSRC && Opc == PPC::LFS;
bool Is64VSXLoad = IsVSSRC && Opc == PPC::LFD;
The second line needs to use isVSFRC (like PPCEmitStore does).
3.) Once both the above are fixed, we're now generating a VSX instruction --
but an incorrect one, since generation of an indexed instruction with null
index is wrong. Fixed by copying the code handling the same issue in
PPCEmitStore.
The second place is PPCFastISel::PPCMaterializeFP, where we would emit an
LFD to load a constant from the literal pool, and use the wrong result
register class. Fixed by hardcoding a F8RC class even on systems
supporting VSX.
Fixes: https://llvm.org/bugs/show_bug.cgi?id=28630
Differential Revision: https://reviews.llvm.org/D22632
llvm-svn: 277823
This patch fixes passing long double type arguments to function in
soft float mode. If there is less than 4 argument registers free
(long double type is mapped in 4 gpr registers in soft float mode)
long double type argument must be passed through stack.
Differential Revision: https://reviews.llvm.org/D20114.
llvm-svn: 277804
This patch fixes pr25548.
Current implementation of PPCBoolRetToInt doesn't handle CallInst correctly, so it failed to do the intended optimization when there is a CallInst with parameters. This patch fixed that.
llvm-svn: 277655
Currently we have a number of tests that fail with -verify-machineinstrs.
To detect this cases earlier we add the option to the testcases with the
exception of tests that will currently fail with this option. PR 27456 keeps
track of this failures.
No code review, as discussed with Hal Finkel.
llvm-svn: 277624
Summary:
When performing cmp for EQ/NE and the operand is sign extended, we can
avoid the truncaton if the bits to be tested are no less than origianl
bits.
Reviewers: eli.friedman
Subscribers: eli.friedman, aemerson, nemanjai, t.p.northover, llvm-commits
Differential Revision: https://reviews.llvm.org/D22933
llvm-svn: 277252
Reverting this commit for now as it seems to be causing failures on
test-suite tests on the clang-ppc64le-linux-lnt bot.
This reverts commit r276044.
llvm-svn: 276068
This is a variant of scavengeRegister() that works for
enterBasicBlockEnd()/backward(). The benefit of the backward mode is
that it is not affected by incomplete kill flags.
This patch also changes
PrologEpilogInserter::doScavengeFrameVirtualRegs() to use the register
scavenger in backwards mode.
Differential Revision: http://reviews.llvm.org/D21885
llvm-svn: 276044
This patch corresponds to review:
https://reviews.llvm.org/D21354
We use direct moves for extracting integer elements from vectors. We also use
direct moves when converting integers to FP. When these operations are chained,
we get a direct move out of a VSR followed by a direct move back into a VSR.
These are redundant - all we need to do is line up the element and convert.
llvm-svn: 275796
Currently the MIR framework prints all its outputs (errors and actual
representation) on stderr.
This patch fixes that by printing the regular output in the output
specified with -o.
Differential Revision: http://reviews.llvm.org/D22251
llvm-svn: 275314
This patch corresponds to review:
http://reviews.llvm.org/D21358
Vector shifts that have the same semantics as a vector swap are cannonicalized
as such to provide additional opportunities for swap removal optimization to
remove unnecessary swaps.
llvm-svn: 275168
An identity COPY like this:
%AL = COPY %AL, %EAX<imp-def>
has no semantic effect, but encodes liveness information: Further users
of %EAX only depend on this instruction even though it does not define
the full register.
Replace the COPY with a KILL instruction in those cases to maintain this
liveness information. (This reverts a small part of r238588 but this
time adds a comment explaining why a KILL instruction is useful).
llvm-svn: 274952
There is a problem in VSXSwapRemoval where it is incorrectly removing permute instructions.
In this case, the permute is feeding both a vector store and also a non-store instruction. In this case, the permute cannot be removed.
The fix is to simply look at all the uses of the vector register defined by the permute and ensure that all the uses are vector store instructions.
This problem was reported in PR 27735 (https://llvm.org/bugs/show_bug.cgi?id=27735).
Test case based on the original problem reported.
Phabricator Review: http://reviews.llvm.org/D21802
llvm-svn: 274645
Summary:
findBetterNeighborChains may or may not find a better chain for each node it finds, which include the node ("St") that visitSTORE is currently processing. If no better chain is found for St, visitSTORE should continue instead of return SDValue(St, 0), as if it's CombinedTo'ed.
This fixes bug 28130. There might be other ways to make the test pass (see D21409). I think both of the patches are fixing actual bugs revealed by the same testcase.
Reviewers: echristo, wschmidt, hfinkel, kbarton, amehsan, arsenm, nemanjai, bogner
Subscribers: mehdi_amini, nemanjai, llvm-commits
Differential Revision: http://reviews.llvm.org/D21692
llvm-svn: 274644
This patch corresponds to review:
http://reviews.llvm.org/D20443
It changes the legalization strategy for illegal vector types from integer
promotion to widening. This only applies for vectors with elements of width
that is a multiple of a byte since we have hardware support for vectors with
1, 2, 3, 8 and 16 byte elements.
Integer promotion for vectors is quite expensive on PPC due to the sequence
of breaking apart the vector, extending the elements and reconstituting the
vector. Two of these operations are expensive.
This patch causes between minor and major improvements in performance on most
benchmarks. There are very few benchmarks whose performance regresses. These
regressions can be handled in a subsequent patch with a DAG combine (similar
to how this patch handles int -> fp conversions of illegal vector types).
llvm-svn: 274535
In bidirectional scheduling this gives more stable results than just
comparing the "reason" fields of the top/bottom node because the reason
field may be higher depending on what other nodes are in the queue.
Differential Revision: http://reviews.llvm.org/D19401
llvm-svn: 273755