Commit Graph

40 Commits

Author SHA1 Message Date
Fangrui Song 502a77f125 Migrate function attribute "no-frame-pointer-elim" to "frame-pointer"="all" as cleanups after D56351 2019-12-24 15:57:33 -08:00
Sam Parker 60d6fb2a63 [SCEV] Use NoWrapFlags when expanding a simple mul
Second functional change following on from rL362687. Pass the
NoWrapFlags from the MulExpr to InsertBinop when we're generating a
shl or mul.

Differential Revision: https://reviews.llvm.org/D61934

llvm-svn: 363540
2019-06-17 10:05:18 +00:00
Benjamin Kramer f1249442cf Revert "[SCEV] Use wrap flags in InsertBinop"
This reverts commit r362687. Miscompiles llvm-profdata during selfhost.

llvm-svn: 362699
2019-06-06 12:35:46 +00:00
Sam Parker 7cc580f5e9 [SCEV] Use wrap flags in InsertBinop
If the given SCEVExpr has no (un)signed flags attached to it, transfer
these to the resulting instruction or use them to find an existing
instruction.

Differential Revision: https://reviews.llvm.org/D61934

llvm-svn: 362687
2019-06-06 08:56:26 +00:00
Eric Christopher cee313d288 Revert "Temporarily Revert "Add basic loop fusion pass.""
The reversion apparently deleted the test/Transforms directory.

Will be re-reverting again.

llvm-svn: 358552
2019-04-17 04:52:47 +00:00
Eric Christopher a863435128 Temporarily Revert "Add basic loop fusion pass."
As it's causing some bot failures (and per request from kbarton).

This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda.

llvm-svn: 358546
2019-04-17 02:12:23 +00:00
Eli Friedman 806136f8ef [LoopReroll] Fix reroll root legality checking.
The code checked that the first root was an appropriate distance from
the base value, but skipped checking the other roots. This could lead to
rerolling a loop that can't be legally rerolled (at least, not without
rewriting the loop in a non-trivial way).

Differential Revision: https://reviews.llvm.org/D56812

llvm-svn: 353779
2019-02-12 00:33:25 +00:00
James Y Knight 693d39dd12 Remove irrelevant references to legacy git repositories from
compiler identification lines in test-cases.

(Doing so only because it's then easier to search for references which
are actually important and need fixing.)

llvm-svn: 351200
2019-01-15 16:18:52 +00:00
Eli Friedman 203eaaf5ba [LoopReroll] Rewrite induction variable rewriting.
This gets rid of a bunch of weird special cases; instead, just use SCEV
rewriting for everything.  In addition to being simpler, this fixes a
bug where we would use the wrong stride in certain edge cases.

The one bit I'm not quite sure about is the trip count handling,
specifically the FIXME about overflow.  In general, I think we need to
widen the exit condition, but that's probably not profitable if the new
type isn't legal, so we probably need a check somewhere.  That said, I
don't think I'm making the existing problem any worse.

As a followup to this, a bunch of IV-related code in root-finding could
be cleaned up; with SCEV-based rewriting, there isn't any reason to
assume a loop will have exactly one or two PHI nodes.

Differential Revision: https://reviews.llvm.org/D45191

llvm-svn: 335400
2018-06-22 22:58:55 +00:00
Shiva Chen 2c864551df [DebugInfo] Add DILabel metadata and intrinsic llvm.dbg.label.
In order to set breakpoints on labels and list source code around
labels, we need collect debug information for labels, i.e., label
name, the function label belong, line number in the file, and the
address label located. In order to keep these information in LLVM
IR and to allow backend to generate debug information correctly.
We create a new kind of metadata for labels, DILabel. The format
of DILabel is

!DILabel(scope: !1, name: "foo", file: !2, line: 3)

We hope to keep debug information as much as possible even the
code is optimized. So, we create a new kind of intrinsic for label
metadata to avoid the metadata is eliminated with basic block.
The intrinsic will keep existing if we keep it from optimized out.
The format of the intrinsic is

llvm.dbg.label(metadata !1)

It has only one argument, that is the DILabel metadata. The
intrinsic will follow the label immediately. Backend could get the
label metadata through the intrinsic's parameter.

We also create DIBuilder API for labels to be used by Frontend.
Frontend could use createLabel() to allocate DILabel objects, and use
insertLabel() to insert llvm.dbg.label intrinsic in LLVM IR.

Differential Revision: https://reviews.llvm.org/D45024

Patch by Hsiangkai Wang.

llvm-svn: 331841
2018-05-09 02:40:45 +00:00
Adrian Prantl abe04759a6 Remove the obsolete offset parameter from @llvm.dbg.value
There is no situation where this rarely-used argument cannot be
substituted with a DIExpression and removing it allows us to simplify
the DWARF backend. Note that this patch does not yet remove any of
the newly dead code.

rdar://problem/33580047
Differential Revision: https://reviews.llvm.org/D35951

llvm-svn: 309426
2017-07-28 20:21:02 +00:00
Eli Friedman c0bba1a96d [LoopReroll] Make root-finding more aggressive.
Allow using an instruction other than a mul or phi as the base for
root-finding. For example, the included testcase includes a loop
which requires using a getelementptr as the base for root-finding.

Differential Revision: https://reviews.llvm.org/D26529

llvm-svn: 287588
2016-11-21 22:35:34 +00:00
Sanjoy Das ab73c9d88e [LoopReroll] Reroll loops with unordered atomic memory accesses
Reviewers: hfinkel, jfb, reames

Subscribers: mcrosier, mzolotukhin, llvm-commits

Differential Revision: https://reviews.llvm.org/D22385

llvm-svn: 275932
2016-07-19 00:23:54 +00:00
Sanjoy Das c7f69b921f Be wary of abnormal exits from loop when exploiting UB
We can safely rely on a NoWrap add recurrence causing UB down the road
only if we know the loop does not have a exit expressed in a way that is
opaque to ScalarEvolution (e.g. by a function call that conditionally
calls exit(0)).

I believe with this change PR28012 is fixed.

Note: I had to change some llvm-lit tests in LoopReroll, since it looks
like they were depending on this incorrect behavior.

llvm-svn: 272237
2016-06-09 01:13:59 +00:00
Lawrence Hu e58a814c07 Enable loopreroll for sext of loop control only IV
This patch extend loopreroll to allow the instruction chain
        of loop control only IV has sext.

        Differential Revision: http://reviews.llvm.org/D19820

llvm-svn: 269121
2016-05-10 21:16:49 +00:00
Lawrence Hu fe7c87beac Revert r26084: Enable loopreroll for sext of loop control only IV
llvm-svn: 269119
2016-05-10 21:11:09 +00:00
Lawrence Hu 4c623d27b5 Revert r269093: Enable loopreroll for sext of loop control only IV
llvm-svn: 269117
2016-05-10 21:04:28 +00:00
Lawrence Hu b68f16e007 Enable loopreroll for sext of loop control only IV
This patch extend loopreroll to allow the instruction chain
    of loop control only IV has sext.

    Differential Revision: http://reviews.llvm.org/D19820

llvm-svn: 269093
2016-05-10 18:00:42 +00:00
Lawrence Hu 8cc3b37d2c Enable loopreroll for sext of loop control only IV
This patch extend loopreroll to allow the instruction chain
    of loop control only IV has sext.

llvm-svn: 269084
2016-05-10 17:42:27 +00:00
Lawrence Hu 1befea2bdc Reroll loops with multiple IV and negative step part 3
support multiple induction variables

    This patch enable loop reroll for the following case:
        for(int i=0;  i<N; i += 2) {
           S += *a++;
           S += *a++;
        };

Differential Revision: http://reviews.llvm.org/D16550

llvm-svn: 268147
2016-04-30 00:51:22 +00:00
Adrian Prantl 75819aedf6 [PR27284] Reverse the ownership between DICompileUnit and DISubprogram.
Currently each Function points to a DISubprogram and DISubprogram has a
scope field. For member functions the scope is a DICompositeType. DIScopes
point to the DICompileUnit to facilitate type uniquing.

Distinct DISubprograms (with isDefinition: true) are not part of the type
hierarchy and cannot be uniqued. This change removes the subprograms
list from DICompileUnit and instead adds a pointer to the owning compile
unit to distinct DISubprograms. This would make it easy for ThinLTO to
strip unneeded DISubprograms and their transitively referenced debug info.

Motivation
----------

Materializing DISubprograms is currently the most expensive operation when
doing a ThinLTO build of clang.

We want the DISubprogram to be stored in a separate Bitcode block (or the
same block as the function body) so we can avoid having to expensively
deserialize all DISubprograms together with the global metadata. If a
function has been inlined into another subprogram we need to store a
reference the block containing the inlined subprogram.

Attached to https://llvm.org/bugs/show_bug.cgi?id=27284 is a python script
that updates LLVM IR testcases to the new format.

http://reviews.llvm.org/D19034
<rdar://problem/25256815>

llvm-svn: 266446
2016-04-15 15:57:41 +00:00
Adrian Prantl b8089516a5 testcase gardening: update the emissionKind enum to the new syntax. (NFC)
llvm-svn: 265081
2016-04-01 00:16:49 +00:00
Zinovy Nis 07ac2bd4d0 [PATCH] Force LoopReroll to reset the loop trip count value after reroll.
It's a bug fix. 
For rerolled loops SE trip count remains unchanged. It leads to incorrect work of the next passes.
My patch just resets SE info for rerolled loop forcing SE to re-evaluate it next time it requested.
I also added a verifier call in the exisitng test to be sure no invalid SE data remain. Without my fix this test would fail with -verify-scev.

Differential Revision: http://reviews.llvm.org/D18316

llvm-svn: 264051
2016-03-22 13:50:57 +00:00
Elena Demikhovsky 9914dbd11b Allow setting MaxRerollIterations above 16
By Ayal Zaks.

Differential Revision http://reviews.llvm.org/D17258

llvm-svn: 261517
2016-02-22 09:38:28 +00:00
Chandler Carruth 31088a9d58 [LPM] Factor all of the loop analysis usage updates into a common helper
routine.

We were getting this wrong in small ways and generally being very
inconsistent about it across loop passes. Instead, let's have a common
place where we do this. One minor downside is that this will require
some analyses like SCEV in more places than they are strictly needed.
However, this seems benign as these analyses are complete no-ops, and
without this consistency we can in many cases end up with the legacy
pass manager scheduling deciding to split up a loop pass pipeline in
order to run the function analysis half-way through. It is very, very
annoying to fix these without just being very pedantic across the board.

The only loop passes I've not updated here are ones that use
AU.setPreservesAll() such as IVUsers (an analysis) and the pass printer.
They seemed less relevant.

With this patch, almost all of the problems in PR24804 around loop pass
pipelines are fixed. The one remaining issue is that we run simplify-cfg
and instcombine in the middle of the loop pass pipeline. We've recently
added some loop variants of these passes that would seem substantially
cleaner to use, but this at least gets us much closer to the previous
state. Notably, the seven loop pass managers is down to three.

I've not updated the loop passes using LoopAccessAnalysis because that
analysis hasn't been fully wired into LoopSimplify/LCSSA, and it isn't
clear that those transforms want to support those forms anyways. They
all run late anyways, so this is harmless. Similarly, LSR is left alone
because it already carefully manages its forms and doesn't need to get
fused into a single loop pass manager with a bunch of other loop passes.

LoopReroll didn't use loop simplified form previously, and I've updated
the test case to match the trivially different output.

Finally, I've also factored all the pass initialization for the passes
that use this technique as well, so that should be done regularly and
reliably.

Thanks to James for the help reviewing and thinking about this stuff,
and Ben for help thinking about it as well!

Differential Revision: http://reviews.llvm.org/D17435

llvm-svn: 261316
2016-02-19 10:45:18 +00:00
Lawrence Hu d3d51061fb Enable loopreroll to rerool loop with pointer induction variable.
Example:

while (buf !=end ) {
   S += buf[0];
   S += buf[1];
   buf +=2;
};

Differential Revision: http://reviews.llvm.org/D13151

llvm-svn: 258709
2016-01-25 19:43:45 +00:00
Lawrence Hu b917cd9fa6 Undo commit 258700 due to missing commit message
llvm-svn: 258708
2016-01-25 19:36:30 +00:00
Lawrence Hu 84b6195e41 Differential Revision: http://reviews.llvm.org/D13151
llvm-svn: 258700
2016-01-25 18:53:39 +00:00
Peter Collingbourne d4bff30370 DI: Reverse direction of subprogram -> function edge.
Previously, subprograms contained a metadata reference to the function they
described. Because most clients need to get or set a subprogram for a given
function rather than the other way around, this created unneeded inefficiency.

For example, many passes needed to call the function llvm::makeSubprogramMap()
to build a mapping from functions to subprograms, and the IR linker needed to
fix up function references in a way that caused quadratic complexity in the IR
linking phase of LTO.

This change reverses the direction of the edge by storing the subprogram as
function-level metadata and removing DISubprogram's function field.

Since this is an IR change, a bitcode upgrade has been provided.

Fixes PR23367. An upgrade script for textual IR for out-of-tree clients is
attached to the PR.

Differential Revision: http://reviews.llvm.org/D14265

llvm-svn: 252219
2015-11-05 22:03:56 +00:00
Weiming Zhao 310770a90f [LoopReroll] Ignore debug intrinsics
Originally, debug intrinsics and annotation intrinsics may prevent
the loop to be rerolled, now they are ignored.

Differential Revision: http://reviews.llvm.org/D13150

llvm-svn: 248718
2015-09-28 17:03:23 +00:00
Lawrence Hu dc8a83b53b Handle loop with negtive induction variable increment
This patch extend LoopReroll pass to hand the loops which
is similar to the following:

      while (len > 1) {
            sum4 += buf[len];
            sum4 += buf[len-1];
            len -= 2;
        }

llvm-svn: 243171
2015-07-24 22:01:49 +00:00
Jingyue Wu 6f72aed3ec [LSR] canonicalize Prod*(1<<C) to Prod<<C
Summary:
Because LSR happens at a late stage where mul of a power of 2 is
typically canonicalized to shl, this canonicalization emits code that
can be better CSE'ed.

Test Plan:
Transforms/LoopStrengthReduce/shl.ll shows how this change makes GVN more
powerful. Fixes some existing tests due to this change.

Reviewers: sanjoy, majnemer, atrick

Reviewed By: majnemer, atrick

Subscribers: majnemer, llvm-commits

Differential Revision: http://reviews.llvm.org/D10448

llvm-svn: 240573
2015-06-24 19:28:40 +00:00
David Blaikie a79ac14fa6 [opaque pointer type] Add textual IR support for explicit type parameter to load instruction
Essentially the same as the GEP change in r230786.

A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)

import fileinput
import sys
import re

pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")

for line in sys.stdin:
  sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))

Reviewers: rafael, dexonsmith, grosser

Differential Revision: http://reviews.llvm.org/D7649

llvm-svn: 230794
2015-02-27 21:17:42 +00:00
David Blaikie 79e6c74981 [opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.

This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.

* This doesn't modify gep operators, only instructions (operators will be
  handled separately)

* Textual IR changes only. Bitcode (including upgrade) and changing the
  in-memory representation will be in separate changes.

* geps of vectors are transformed as:
    getelementptr <4 x float*> %x, ...
  ->getelementptr float, <4 x float*> %x, ...
  Then, once the opaque pointer type is introduced, this will ultimately look
  like:
    getelementptr float, <4 x ptr> %x
  with the unambiguous interpretation that it is a vector of pointers to float.

* address spaces remain on the pointer, not the type:
    getelementptr float addrspace(1)* %x
  ->getelementptr float, float addrspace(1)* %x
  Then, eventually:
    getelementptr float, ptr addrspace(1) %x

Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.

update.py:
import fileinput
import sys
import re

ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile(       r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")

def conv(match, line):
  if not match:
    return line
  line = match.groups()[0]
  if len(match.groups()[5]) == 0:
    line += match.groups()[2]
  line += match.groups()[3]
  line += ", "
  line += match.groups()[1]
  line += "\n"
  return line

for line in sys.stdin:
  if line.find("getelementptr ") == line.find("getelementptr inbounds"):
    if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
      line = conv(re.match(ibrep, line), line)
  elif line.find("getelementptr ") != line.find("getelementptr ("):
    line = conv(re.match(normrep, line), line)
  sys.stdout.write(line)

apply.sh:
for name in "$@"
do
  python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
  rm -f "$name.tmp"
done

The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh

After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).

The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.

Reviewers: rafael, dexonsmith, grosser

Differential Revision: http://reviews.llvm.org/D7636

llvm-svn: 230786
2015-02-27 19:29:02 +00:00
James Molloy e32d806b5f [LoopReroll] Relax some assumptions a little.
We won't find a root with index zero in any loop that we are able to reroll.
However, we may find one in a non-rerollable loop, so bail gracefully instead
of failing hard.

llvm-svn: 229406
2015-02-16 17:02:00 +00:00
James Molloy 4c7deb2259 [LoopReroll] Don't crash on dead code
If a PHI has no users, don't crash; bail gracefully. This shouldn't
happen often, but we can make no guarantees that previous passes didn't leave
dead code around.

llvm-svn: 229405
2015-02-16 17:01:52 +00:00
James Molloy e805ad95dc [LoopRerolling] Be more forgiving with instruction order.
We can't solve the full subgraph isomorphism problem. But we can
allow obvious cases, where for example two instructions of different
types are out of order. Due to them having different types/opcodes,
there is no ambiguity.

llvm-svn: 228931
2015-02-12 15:54:14 +00:00
James Molloy f147359376 [LoopReroll] Introduce the concept of DAGRootSets.
A DAGRootSet models an induction variable being used in a rerollable
loop. For example:

   x[i*3+0] = y1
   x[i*3+1] = y2
   x[i*3+2] = y3

   Base instruction -> i*3
                    +---+----+
                   /    |     \
               ST[y1]  +1     +2  <-- Roots
                        |      |
                      ST[y2] ST[y3]

There may be multiple DAGRootSets, for example:

   x[i*2+0] = ...   (1)
   x[i*2+1] = ...   (1)
   x[i*2+4] = ...   (2)
   x[i*2+5] = ...   (2)
   x[(i+1234)*2+5678] = ... (3)
   x[(i+1234)*2+5679] = ... (3)

This concept is similar to the "Scale" member used previously, but allows
multiple independent sets of roots based off the same induction variable.

llvm-svn: 228821
2015-02-11 09:19:47 +00:00
David Peixotto ea9ba446d5 Fix loop rerolling pass failure with non-consant loop lower bound
The loop rerolling pass was failing with an assertion failure from a
failed cast on loops like this:

  void foo(int *A, int *B, int m, int n) {
    for (int i = m; i < n; i+=4) {
      A[i+0] = B[i+0] * 4;
      A[i+1] = B[i+1] * 4;
      A[i+2] = B[i+2] * 4;
      A[i+3] = B[i+3] * 4;
    }
  }

The code was casting the SCEV-expanded code for the new
induction variable to a phi-node. When the loop had a non-constant
lower bound, the SCEV expander would end the code expansion with an
add insted of a phi node and the cast would fail.

It looks like the cast to a phi node was only needed to get the
induction variable value coming from the backedge to compute the end
of loop condition. This patch changes the loop reroller to compare
the induction variable to the number of times the backedge is taken
instead of the iteration count of the loop. In other words, we stop
the loop when the current value of the induction variable ==
IterationCount-1. Previously, the comparison was comparing the
induction variable value from the next iteration == IterationCount.

This problem only seems to occur on 32-bit targets. For some reason,
the loop is not rerolled on 64-bit targets.

PR18290

llvm-svn: 198425
2014-01-03 17:20:01 +00:00
Hal Finkel bf45efde2d Add a loop rerolling pass
This adds a loop rerolling pass: the opposite of (partial) loop unrolling. The
transformation aims to take loops like this:

for (int i = 0; i < 3200; i += 5) {
  a[i]     += alpha * b[i];
  a[i + 1] += alpha * b[i + 1];
  a[i + 2] += alpha * b[i + 2];
  a[i + 3] += alpha * b[i + 3];
  a[i + 4] += alpha * b[i + 4];
}

and turn them into this:

for (int i = 0; i < 3200; ++i) {
  a[i] += alpha * b[i];
}

and loops like this:

for (int i = 0; i < 500; ++i) {
  x[3*i] = foo(0);
  x[3*i+1] = foo(0);
  x[3*i+2] = foo(0);
}

and turn them into this:

for (int i = 0; i < 1500; ++i) {
  x[i] = foo(0);
}

There are two motivations for this transformation:

  1. Code-size reduction (especially relevant, obviously, when compiling for
code size).

  2. Providing greater choice to the loop vectorizer (and generic unroller) to
choose the unrolling factor (and a better ability to vectorize). The loop
vectorizer can take vector lengths and register pressure into account when
choosing an unrolling factor, for example, and a pre-unrolled loop limits that
choice. This is especially problematic if the manual unrolling was optimized
for a machine different from the current target.

The current implementation is limited to single basic-block loops only. The
rerolling recognition should work regardless of how the loop iterations are
intermixed within the loop body (subject to dependency and side-effect
constraints), but the significant restriction is that the order of the
instructions in each iteration must be identical. This seems sufficient to
capture all current use cases.

This pass is not currently enabled by default at any optimization level.

llvm-svn: 194939
2013-11-16 23:59:05 +00:00