For now, just ignore them. Later, we could try looking through LazyCompoundVals,
but we at least shouldn't crash.
<rdar://problem/16153464>
llvm-svn: 202212
The warnings fall into three groups.
1) Using an absolute value function of the wrong type, for instance, using the
int absolute value function when the argument is a floating point type.
2) Using the improper sized absolute value function, for instance, using abs
when the argument is a long long. llabs should be used instead.
From these two cases, an implicit conversion will occur which may cause
unexpected behavior. Where possible, suggest the proper absolute value
function to use, and which header to include if the function is not available.
3) Taking the absolute value of an unsigned value. In addition to this warning,
suggest to remove the function call. This usually indicates a logic error
since the programmer assumed negative values would have been possible.
llvm-svn: 202211
The original text is very terse, so I've expanded on it.
Specifically, in the original text:
* "The selector value is a positive number if the exception matched a
type info" -- It wasn't clear that this meant "if the exception
matched a 'catch' clause".
* "If nothing is matched, the behavior of the program is
`undefined`_." -- It's actually implementation-defined in C++
rather than undefined, as the new text explains.
llvm-svn: 202209
Eventually DataLayoutPass should go away, but for now that is the only easy
way to get a DataLayout in some APIs. This patch only changes the ones that
have easy access to a Module.
One interesting issue with sometimes using DataLayoutPass and sometimes
fetching it from the Module is that we have to make sure they are equivalent.
We can get most of the way there by always constructing the pass with a Module.
In fact, the pass could be changed to point to an external DataLayout instead
of owning one to make this stricter.
Unfortunately, the C api passes a DataLayout, so it has to be up to the caller
to make sure the pass and the module are in sync.
llvm-svn: 202204
No tool does this currently, but as everything else in a module we should be
able to change its DataLayout.
Most of the fix is in DataLayout to make sure it can be reset properly.
The test uses Module::setDataLayout since the fact that we mutate a DataLayout
is an implementation detail. The module could hold a OwningPtr<DataLayout> and
the DataLayout itself could be immutable.
Thanks to Philip Reames for pushing me in the right direction.
llvm-svn: 202198
their inputs come from std::stable_sort and they are not total orders.
I'm not a huge fan of this, but the really bad std::stable_sort is right
at the beginning of Reassociate. After we commit to stable-sort based
consistent respect of source order, the downstream sorts shouldn't undo
that unless they have a total order or they are used in an
order-insensitive way. Neither appears to be true for these cases.
I don't have particularly good test cases, but this jumped out by
inspection when looking for output instability in this pass due to
changes in the ordering of std::sort.
llvm-svn: 202196
implemented this way a long time ago and due to the overwhelming bugs
that surfaced, moved to a much more relaxed variant. Richard Smith would
like to understand the magnitude of this problem and it seems fairly
harmless to keep some flag-controlled logic to get the extremely strict
behavior here. I'll remove it if it doesn't prove useful.
llvm-svn: 202193
We need to abort the formation of counter-register-based loops where there are
128-bit integer operations that might become function calls.
llvm-svn: 202192
Now that DataLayout is not a pass, store one in Module.
Since the C API expects to be able to get a char* to the datalayout description,
we have to keep a std::string somewhere. This patch keeps it in Module and also
uses it to represent modules without a DataLayout.
Once DataLayout is mandatory, we should probably move the string to DataLayout
itself since it won't be necessary anymore to represent the special case of a
module without a DataLayout.
llvm-svn: 202190
Also fix the bug where lldb prints: "Got a connection and launched debugserver" rather
than the name of the process it actually launched.
llvm-svn: 202189
Variadic functions have an unspecified parameter tag after the last
argument. In IR this is represented as an unspecified parameter in the
subroutine type.
Paired commit with CFE r202185.
rdar://problem/13690847
This re-applies r202184 + a bugfix in DwarfDebug's argument handling.
llvm-svn: 202188
Variadic functions have an unspecified parameter tag after the last
argument. In IR this is represented as an unspecified parameter in the
subroutine type.
Paired commit with CFE.
rdar://problem/13690847
llvm-svn: 202184
Generating RTTI in the MS ABI is currently not supported, and the failures
are confusing to users, so let's disable it by default for now.
llvm-svn: 202178
This was changed to use manual desugaring and multiplication in r201832
and fixed for multi-dimensional arrays in r201917. However, it breaks
down in the presence of typedefs. Rather than attempting to handle all
the desugaring, just go back to calling the generic type info code.
This was discovered while compiling SIInstrWaits.cpp in the R600
backend.
llvm-svn: 202175
- Don't emit anything when we encounter a call to a conversion operator.
"bar(a & b)" instead of "bar(a & b.operator int())"
This preserves the semantics and is still idempotent if we print the AST multiple times.
- Properly print declarations of conversion operators.
"explicit operator bool();" instead of "bool operator _Bool();"
PR18776.
llvm-svn: 202167
The function with uwtable attribute might be visited by the
stack unwinder, thus the link register should be considered
as clobbered after the execution of the branch and link
instruction (i.e. the definition of the machine instruction
can't be ignored) even when the callee function are marked
with noreturn.
llvm-svn: 202165
The behaviour of the XCore's instruction buffer means that the performance
of the same code sequence can differ depending on whether it starts at a 4
byte aligned address or not. Since we don't model the instruction buffer
in the backend we have no way of knowing for sure if it is beneficial to
word align a specific function. However, in the absence of precise
modelling, it is better on balance to word align functions because:
* It makes a fetch-nop while executing the prologue slightly less likely.
* If we don't word align functions then a small perturbation in one
function can have a dramatic knock on effect. If the size of the function
changes it might change the alignment and therefore the performance of
all the functions that happen to follow it in the binary. This butterfly
effect makes it harder to reason about and measure the performance of
code.
llvm-svn: 202163