Both -analyze-function and -analyzer-display-progress now share the same
convention for naming functions, which allows discriminating between
methods with the same name in different classes, C++ overloads, and also
presents Objective-C instance and class methods in the convenient notation.
This also allows looking up the name for the particular function you're trying
to restrict analysis to in the -analyzer-display-progress output,
in case it was not instantly obvious.
Differential Revision: https://reviews.llvm.org/D22856
llvm-svn: 278018
This patch adds a command line option to list the checkers that were enabled
by analyzer-checker and not disabled by -analyzer-disable-checker.
It can be very useful to debug long command lines when it is not immediately
apparent which checkers are turned on and which checkers are turned off.
Differential Revision: https://reviews.llvm.org/D23060
llvm-svn: 278006
Dynamic casts are handled relatively well by the static analyzer.
BaseToDerived casts however are treated conservatively. This can cause some
false positives with the NewDeleteLeaks checker.
This patch alters the behavior of BaseToDerived casts. In case a dynamic cast
would succeed use the same semantics. Otherwise fall back to the conservative
approach.
Differential Revision: https://reviews.llvm.org/D23014
llvm-svn: 277989
Correct two comments that do not match the current behavior of the checker.
A patch by Alexander Droste!
Differential Revision: https://reviews.llvm.org/D22670
llvm-svn: 277547
Add new APIs that require localized strings and remove two APIs that were
incorrectly marked as requiring a user-facing string.
A patch by Kulpreet Chilana!
Differential Revision: https://reviews.llvm.org/D22926
llvm-svn: 277273
Currently Clang use int32 to represent sampler_t, which have been a source of issue for some backends, because in some backends sampler_t cannot be represented by int32. They have to depend on kernel argument metadata and use IPA to find the sampler arguments and global variables and transform them to target specific sampler type.
This patch uses opaque pointer type opencl.sampler_t* for sampler_t. For each use of file-scope sampler variable, it generates a function call of __translate_sampler_initializer. For each initialization of function-scope sampler variable, it generates a function call of __translate_sampler_initializer.
Each builtin library can implement its own __translate_sampler_initializer(). Since the real sampler type tends to be architecture dependent, allowing it to be initialized by a library function simplifies backend design. A typical implementation of __translate_sampler_initializer could be a table lookup of real sampler literal values. Since its argument is always a literal, the returned pointer is known at compile time and easily optimized to finally become some literal values directly put into image read instructions.
This patch is partially based on Alexey Sotkin's work in Khronos Clang (3d4eec6162).
Differential Revision: https://reviews.llvm.org/D21567
llvm-svn: 277024
This patch adds the CloneDetector class which allows searching source code
for clones.
For every statement or group of statements within a compound statement,
CloneDetector computes a hash value, and finds clones by detecting
identical hash values.
This initial patch only provides a simple hashing mechanism
that hashes the kind of each sub-statement.
This patch also adds CloneChecker - a simple static analyzer checker
that uses CloneDetector to report copy-pasted code.
Patch by Raphael Isemann!
Differential Revision: https://reviews.llvm.org/D20795
llvm-svn: 276782
Summary:
This patch moves the MPIFunctionClassifier header to `clang/include/clang/StaticAnalyzer/Checkers`,
in order to make it accessible in other parts of the architecture.
Reviewers: dcoughlin, zaks.anna
Subscribers: alexfh, cfe-commits
Patch by Alexander Droste!
Differential Revision: https://reviews.llvm.org/D22671
llvm-svn: 276639
Remove some FIXMEs in the surrounding code,
which have been addressed long time ago
by introducing checker-specific tags.
Differential Revision: https://reviews.llvm.org/D22622
llvm-svn: 276557
This checker checks copy and move assignment operators whether they are
protected against self-assignment. Since C++ core guidelines discourages
explicit checking for `&rhs==this` in general we take a different approach: in
top-frame analysis we branch the exploded graph for two cases, where &rhs==this
and &rhs!=this and let existing checkers (e.g. unix.Malloc) do the rest of the
work. It is important that we check all copy and move assignment operator in top
frame even if we checked them already since self-assignments may happen
undetected even in the same translation unit (e.g. using random indices for an
array what may or may not be the same).
This reapplies r275820 after fixing a string-lifetime issue discovered by the
bots.
A patch by Ádám Balogh!
Differential Revision: https://reviews.llvm.org/D19311
llvm-svn: 276365
This checker checks copy and move assignment operators whether they are
protected against self-assignment. Since C++ core guidelines discourages
explicit checking for `&rhs==this` in general we take a different approach: in
top-frame analysis we branch the exploded graph for two cases, where &rhs==this
and &rhs!=this and let existing checkers (e.g. unix.Malloc) do the rest of the
work. It is important that we check all copy and move assignment operator in top
frame even if we checked them already since self-assignments may happen
undetected even in the same translation unit (e.g. using random indices for an
array what may or may not be the same).
A patch by Ádám Balogh!
Differential Revision: https://reviews.llvm.org/D19311
llvm-svn: 275820
This patch adds a new AST node: ObjCAvailabilityCheckExpr, and teaches the
Parser and Sema to generate it. This node represents an availability check of
the form:
@available(macos 10.10, *);
Which will eventually compile to a runtime check of the host's OS version. This
is the first patch of the feature I proposed here:
http://lists.llvm.org/pipermail/cfe-dev/2016-July/049851.html
Differential Revision: https://reviews.llvm.org/D22171
llvm-svn: 275654
This patch is to implement sema and parsing for 'target parallel for simd' pragma.
Differential Revision: http://reviews.llvm.org/D22096
llvm-svn: 275365
This encourages checkers to make logical decisions depending on
value of which region was the symbol under consideration
introduced to denote.
A similar technique is already used in a couple of checkers;
they were modified to call the new method.
Differential Revision: http://reviews.llvm.org/D22242
llvm-svn: 275290
This proposed patch adds crude handling of atomics to the static analyzer.
Rather than ignore AtomicExprs, as we now do, this patch causes the analyzer
to escape the arguments. This is imprecise -- and we should model the
expressions fully in the future -- but it is less wrong than ignoring their
effects altogether.
This is rdar://problem/25353187
Differential Revision: http://reviews.llvm.org/D21667
llvm-svn: 274816
The analyzer does not model C++ temporary destructors completely and so
reports false alarms about leaks of memory allocated by the internals of
shared_ptr:
std::shared_ptr<int> p(new int(1));
p = nullptr; // 'Potential leak of memory pointed to by field __cntrl_'
This patch suppresses all diagnostics where the end of the path is inside
a method in std::shared_ptr.
It also reorganizes the tests for suppressions in the C++ standard library
to use a separate simulated header for library functions with bugs
that were deliberately inserted to test suppression. This will prevent
other tests from using these as models.
rdar://problem/23652766
llvm-svn: 274691
Summary: This patch is an implementation of sema and parsing for the OpenMP composite pragma 'distribute simd'.
Differential Revision: http://reviews.llvm.org/D22007
llvm-svn: 274604
Summary: This patch is an implementation of sema and parsing for the OpenMP composite pragma 'distribute parallel for simd'.
Differential Revision: http://reviews.llvm.org/D21977
llvm-svn: 274530
Replace inheriting constructors implementation with new approach, voted into
C++ last year as a DR against C++11.
Instead of synthesizing a set of derived class constructors for each inherited
base class constructor, we make the constructors of the base class visible to
constructor lookup in the derived class, using the normal rules for
using-declarations.
For constructors, UsingShadowDecl now has a ConstructorUsingShadowDecl derived
class that tracks the requisite additional information. We create shadow
constructors (not found by name lookup) in the derived class to model the
actual initialization, and have a new expression node,
CXXInheritedCtorInitExpr, to model the initialization of a base class from such
a constructor. (This initialization is special because it performs real perfect
forwarding of arguments.)
In cases where argument forwarding is not possible (for inalloca calls,
variadic calls, and calls with callee parameter cleanup), the shadow inheriting
constructor is not emitted and instead we directly emit the initialization code
into the caller of the inherited constructor.
Note that this new model is not perfectly compatible with the old model in some
corner cases. In particular:
* if B inherits a private constructor from A, and C uses that constructor to
construct a B, then we previously required that A befriends B and B
befriends C, but the new rules require A to befriend C directly, and
* if a derived class has its own constructors (and so its implicit default
constructor is suppressed), it may still inherit a default constructor from
a base class
llvm-svn: 274049
[OpenMP] Initial implementation of parse and sema for composite pragma 'distribute parallel for'
This patch is an initial implementation for #distribute parallel for.
The main differences that affect other pragmas are:
The implementation of 'distribute parallel for' requires blocking of the associated loop, where blocks are "distributed" to different teams and iterations within each block are scheduled to parallel threads within each team. To implement blocking, sema creates two additional worksharing directive fields that are used to pass the team assigned block lower and upper bounds through the outlined function resulting from 'parallel'. In this way, scheduling for 'for' to threads can use those bounds.
As a consequence of blocking, the stride of 'distribute' is not 1 but it is equal to the blocking size. This is returned by the runtime and sema prepares a DistIncrExpr variable to hold that value.
As a consequence of blocking, the global upper bound (EnsureUpperBound) expression of the 'for' is not the original loop upper bound (e.g. in for(i = 0 ; i < N; i++) this is 'N') but it is the team-assigned block upper bound. Sema creates a new expression holding the calculation of the actual upper bound for 'for' as UB = min(UB, PrevUB), where UB is the loop upper bound, and PrevUB is the team-assigned block upper bound.
llvm-svn: 273884
http://reviews.llvm.org/D21564
This patch is an initial implementation for #distribute parallel for.
The main differences that affect other pragmas are:
The implementation of 'distribute parallel for' requires blocking of the associated loop, where blocks are "distributed" to different teams and iterations within each block are scheduled to parallel threads within each team. To implement blocking, sema creates two additional worksharing directive fields that are used to pass the team assigned block lower and upper bounds through the outlined function resulting from 'parallel'. In this way, scheduling for 'for' to threads can use those bounds.
As a consequence of blocking, the stride of 'distribute' is not 1 but it is equal to the blocking size. This is returned by the runtime and sema prepares a DistIncrExpr variable to hold that value.
As a consequence of blocking, the global upper bound (EnsureUpperBound) expression of the 'for' is not the original loop upper bound (e.g. in for(i = 0 ; i < N; i++) this is 'N') but it is the team-assigned block upper bound. Sema creates a new expression holding the calculation of the actual upper bound for 'for' as UB = min(UB, PrevUB), where UB is the loop upper bound, and PrevUB is the team-assigned block upper bound.
llvm-svn: 273705
During the core analysis, ExplodedNodes are added to the
ExplodedGraph, and those nodes are cached for deduplication purposes.
After core analysis, reports are generated. Here, trimmed copies of
the ExplodedGraph are made. Since the ExplodedGraph has already been
deduplicated, there is no need to deduplicate again.
This change makes it possible to add ExplodedNodes to an
ExplodedGraph without the overhead of deduplication. "Uncached" nodes
also cannot be iterated over, but none of the report generation code
attempts to iterate over all nodes. This change reduces the analysis
time of a large .C file from 3m43.941s to 3m40.256s (~1.6% speedup).
It should slightly reduce memory consumption. Gains should be roughly
proportional to the number (and path length) of static analysis
warnings.
This patch enables future work that should remove the need for an
InterExplodedGraphMap inverse map. I plan on using the (now unused)
ExplodedNode link to connect new nodes to the original nodes.
http://reviews.llvm.org/D21229
llvm-svn: 273572
Like with SenTestCase, subclasses of XCTestCase follow a "tear down" idiom to
release instance variables and so typically do not release ivars in -dealloc.
This commit applies the existing special casing for SenTestCase to XCTestCase
as well.
rdar://problem/25884696
llvm-svn: 273441
Teach trackNullOrUndefValue() how to properly look through PseudoObjectExprs
to find the underlying semantic method call for property getters. This fixes a
crash when looking through class property getters that I introduced in r265839.
rdar://problem/26796666
llvm-svn: 273340
classes.
MSVC actively uses unqualified lookup in dependent bases, lookup at the
instantiation point (non-dependent names may be resolved on things
declared later) etc. and all this stuff is the main cause of
incompatibility between clang and MSVC.
Clang tries to emulate MSVC behavior but it may fail in many cases.
clang could store lexed tokens for member functions definitions within
ClassTemplateDecl for later parsing during template instantiation.
It will allow resolving many possible issues with lookup in dependent
base classes and removing many already existing MSVC-specific
hacks/workarounds from the clang code.
llvm-svn: 272774
This is a speculative attempt to fix the compiler error: "list initialization inside
member initializer list or non-static data member initializer is not implemented" with
r272529.
llvm-svn: 272530
This commit adds a static analysis checker to verify the correct usage of the MPI API in C
and C++. This version updates the reverted r271981 to fix a memory corruption found by the
ASan bots.
Three path-sensitive checks are included:
- Double nonblocking: Double request usage by nonblocking calls without intermediate wait
- Missing wait: Nonblocking call without matching wait.
- Unmatched wait: Waiting for a request that was never used by a nonblocking call
Examples of how to use the checker can be found at https://github.com/0ax1/MPI-Checker
A patch by Alexander Droste!
Reviewers: zaks.anna, dcoughlin
Differential Revision: http://reviews.llvm.org/D21081
llvm-svn: 272529
Rehashing the ExplodedNode table is very expensive. The hashing
itself is expensive, and the general activity of iterating over the
hash table is highly cache unfriendly. Instead, we guess at the
eventual size by using the maximum number of steps allowed. This
generally avoids a rehash. It is possible that we still need to
rehash if the backlog of work that is added to the worklist
significantly exceeds the number of work items that we process. Even
if we do need to rehash in that scenario, this change is still a
win, as we still have fewer rehashes that we would have prior to
this change.
For small work loads, this will increase the memory used. For large
work loads, it will somewhat reduce the memory used. Speed is
significantly increased. A large .C file took 3m53.812s to analyze
prior to this change. Now it takes 3m38.976s, for a ~6% improvement.
http://reviews.llvm.org/D20933
llvm-svn: 272394
Second try at reapplying
"[analyzer] Add checker for correct usage of MPI API in C and C++."
Special thanks to Dan Liew for helping test the fix for the template
specialization compiler error with gcc.
The original patch is by Alexander Droste!
Differential Revision: http://reviews.llvm.org/D12761
llvm-svn: 271977
Reapply r271907 with a fix for the compiler error with gcc about specializing
clang::ento::ProgramStateTrait in a different namespace.
Differential Revision: http://reviews.llvm.org/D12761
llvm-svn: 271914