The isSigned argument of makeLibCall function was hard-coded to false
(unsigned). This caused zero extension on MIPS64 soft float.
As the result SingleSource/Benchmarks/Stanford/FloatMM test and
SingleSource/UnitTests/2005-07-17-INT-To-FP test failed.
The solution was to use the proper argument.
Patch by Strahinja Petrovic.
Differential Revision: http://reviews.llvm.org/D7292
llvm-svn: 228765
table entry. This happens when SROA splits up an alloca and the resulting
allocas cannot be lowered to SSA values because their address is passed
to a function.
Fixes PR22502.
llvm-svn: 228764
This makes llvm-pdbdump available on all platforms, although it
will currently fail to create a dumper if there is no PDB reader
implementation for the current platform.
It implements dumping of compilands and children, which is less
information than was previously available, but it has to be
rewritten from scratch using the new set of interfaces, so the
rest of the functionality will be added back in subsequent commits.
llvm-svn: 228755
Simply loading or storing the frame pointer is not sufficient for
Windows targets. Instead, create a synthetic frame object that we will
lower later. References to this synthetic object will be replaced with
the correct reference to the frame address.
llvm-svn: 228748
This implements DebugInfoPDB when the DIA SDK is present on the system.
Specifically, this means that the following conditions are met:
1) You are building on Windows.
2) You are building with MSVC.
3) Visual Studio did not corrupt the installation of DIA due to a
known issue with side-by-side installations of VS2012 and VS2013.
If all of these conditions are true, you will be able to pass a value
of PDB_Reader::DIA to PDB::createPdbReader().
There are no tests for this yet, as any test will be in the form of a
lit test which tests the llvm-pdbdump.exe, which still needs to be
rewritten in terms of this library.
llvm-svn: 228747
Unless we meet an insertvalue on a path from some value to a return, that value
will be live if *any* of the return's components are live, so all of those
components must be added to the MaybeLiveUses.
Previously we were deleting arguments if sub-value 0 turned out to be dead.
llvm-svn: 228731
Add new API for converting temporaries that may self-reference.
Self-referencing nodes are not allowed to be uniqued, so sending them
into `replaceWithUniqued()` is dangerous (and this commit adds
assertions that prevent it).
`replaceWithPermanent()` has similar semantics to `get()` followed by
calls to `replaceOperandWith()`. In particular, if there's a
self-reference, it returns a distinct node; otherwise, it returns a
uniqued one. Like `replaceWithUniqued()` and `replaceWithDistinct()`
(well, it calls out to them) it mutates the temporary node in place if
possible, only calling `replaceAllUsesWith()` on a uniquing collision.
llvm-svn: 228726
See full discussion in http://reviews.llvm.org/D7491.
We now hide the add-immediate and call instructions together in a
separate pseudo-op, which is tagged to define GPR3 and clobber the
call-killed registers. The PPCTLSDynamicCall pass prior to RA now
expands this op into the two separate addi and call ops, with explicit
definitions of GPR3 on both instructions, and explicit clobbers on the
call instruction. The pass is now marked as requiring and preserving
the LiveIntervals and SlotIndexes analyses, and fixes these up after
the replacement sequences are introduced.
Self-hosting has been verified on LE P8 and BE P7 with various
optimization levels, etc. It has also been verified with the
--no-tls-optimize flag workaround removed.
llvm-svn: 228725
Walk the instructions marked FrameSetup and consider any stores of XMM
registers to the stack as needing a SaveXMM opcode.
This fixes PR22521.
Differential Revision: http://reviews.llvm.org/D7527
llvm-svn: 228724
On Windows, we now use RaiseException to generate the kind of trap we require (one which calls our vectored exception handler), and fall back to using a volatile write to simulate a trap elsewhere.
llvm-svn: 228691
Added most of the missing vector folding patterns for AVX2 (as well as fixing the vpermpd and verpmq patterns)
Differential Revision: http://reviews.llvm.org/D7492
llvm-svn: 228688
Background: When handling underlying objects for a store, the vector
of previous mem uses, mapped to the same Value, is afterwards cleared
(regardless of ThisMayAlias). This means that during handling of the
next store using the same Value, adjustChainDeps() must be called,
otherwise a dependency might be missed.
For example, three spill/reload (NonAliasing) memory accesses using
the same Value 'a', with different offsets:
SU(2): store @a
SU(1): store @a, Offset:1
SU(0): load @a
In this case we have:
* SU(1) does not need a dep against SU(0). Therefore,SU(0) ends up in
RejectMemNodes and is removed from the mem-uses list (AliasMemUses
or NonAliasMemUses), as this list is cleared.
* SU(2) needs a dep against SU(0). Therefore, SU(2) must check
RejectMemNodes by calling adjustChainDeps().
Previously, for store SUs, adjustChainDeps() was only called if
MayAlias was true, missing the S(2) to S(0) dependency in the case
above. The fix is to always call adjustChainDeps(), regardless of
MayAlias, since this applies both for AliasMemUses and
NonAliasMemUses.
No testcase found for any in-tree target.
llvm-svn: 228686
This patch adds the complete AMD Bulldozer XOP instruction set to the memory folding pattern tables for stack folding, etc.
Note: Many of the XOP instructions have multiple table entries as it can fold loads from different sources.
Differential Revision: http://reviews.llvm.org/D7484
llvm-svn: 228685
This patch teaches X86FastISel how to select AVX instructions for scalar
float/double convert operations.
Before this patch, X86FastISel always selected legacy SSE instructions
for FPExt (from float to double) and FPTrunc (from double to float).
For example:
\code
define double @foo(float %f) {
%conv = fpext float %f to double
ret double %conv
}
\end code
Before (with -mattr=+avx -fast-isel) X86FastIsel selected a CVTSS2SDrr which is
legacy SSE:
cvtss2sd %xmm0, %xmm0
With this patch, X86FastIsel selects a VCVTSS2SDrr instead:
vcvtss2sd %xmm0, %xmm0, %xmm0
Added test fast-isel-fptrunc-fpext.ll to check both the register-register and
the register-memory float/double conversion variants.
Differential Revision: http://reviews.llvm.org/D7438
llvm-svn: 228682
This commit isn't using the correct context, and is transfoming calls
that are operands to loads rather than calls that are operands to an
icmp feeding into an assume. I've replied on the original review thread
with a very reduced test case and some thoughts on how to rework this.
llvm-svn: 228677
std::strings) rather than StringRefs in JITSymbol get-address lambda.
Capturing a StringRef by-value is still effectively capturing a reference, which
is no good here because the referenced string may be gone by the time the lambda
is being evaluated the original value may be gone. Make sure to capture a
std::string instead.
No test case: This bug doesn't manifest under OrcMCJITReplacement, since it
keeps IR modules (from which the StringRefs are sourced) alive permanently.
llvm-svn: 228676
Since header files are not compilation units, CMake does not require
you to specify them in the CMakeLists.txt file. As a result, unless a
header file is explicitly added, CMake won't know about it, and when
generating IDE-based projects, CMake won't put the header files into
the IDE project. LLVM currently tries to deal with this in two ways:
1) It looks for all .h files that are in the project directory, and
adds those.
2) llvm_add_library() understands the ADDITIONAL_HEADERS argument,
which allows one to list an arbitrary list of headers.
This patch takes things one step further. It adds the ability for
llvm_add_library() to take an ADDITIONAL_HEADER_DIRS argument, which
will specify a list of folders which CMake will glob for header files.
Furthermore, it will glob not only for .h files, but also for .inc
files.
Included in this CL is an update to one of the existing users of
ADDITIONAL_HEADERS to use this new argument instead, to serve as an
illustration of how this cleans up the CMake.
The big advantage of this new approach is that until now, there was no
way for the IDE projects to locate the header files that are in the
include tree. In other words, if you are in, for example,
lib/DebugInfo/DWARF, the corresponding includes for this project will
be located under include/llvm/DebugInfo/DWARF. Now, in the
CMakeLists.txt for lib/DebugInfo/DWARF, you can simply write:
ADDITIONAL_HEADER_DIRS
../../include/llvm/DebugInfo/DWARF
as an argument to llvm_add_library(), and all header files will get
added to the IDE project.
Differential Revision: http://reviews.llvm.org/D7460
Reviewed By: Chris Bieneman
llvm-svn: 228670
This allows all CMake projects, as well as C++ code, to detect if
and when DIA SDK is available for use so that we can enable the
DIA-based PDB reader implementation.
Differential Revision: http://reviews.llvm.org/D7457
Reviewed By: Chandler Carruth
llvm-svn: 228669
nodes when folding bitcasts of constants.
We can't fold things and then check after-the-fact whether it was legal.
Once we have formed the DAG node, arbitrary other nodes may have been
collapsed to it. There is no easy way to go back. Instead, we need to
test for the specific folding cases we're interested in and ensure those
are legal first.
This could in theory make this less powerful for bitcasting from an
integer to some vector type, but AFAICT, that can't actually happen in
the SDAG so its fine. Now, we *only* whitelist specific int->fp and
fp->int bitcasts for post-legalization folding. I've added the test case
from the PR.
(Also as a note, this does not appear to be in 3.6, no backport needed)
llvm-svn: 228656
Summary:
The CMake configuration is explicitely looking for Debug build, all the
other variant disable assertions.
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7359
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 228653
I noticed this fields were never used in r228607, but I neglected to
propagate that into `MDTemplateParameter` until now. This really should
have been done before commit in r228640; sorry for the churn.
llvm-svn: 228652
Win64 has specific contraints on what valid prologues and epilogues look
like. This constraint is born from the flexibility and descriptiveness
of Win64's unwind opcodes.
Prologues previously emitted by LLVM could not be represented by the
unwind opcodes, preventing operations powered by stack unwinding to
successfully work.
Differential Revision: http://reviews.llvm.org/D7520
llvm-svn: 228641
Add specialized debug info metadata nodes that match the `DIDescriptor`
wrappers (used by `DIBuilder`) closely. Assembly and bitcode support to
follow soon (it'll mostly just be obvious), but this sketches in today's
schema. This is the first big commit (well, the only *big* one aside
from the testcase changes that'll come when I move this into place) for
PR22464.
I've marked a bunch of obvious changes as `TODO`s in the source; I plan
to make those changes promptly after this hierarchy is moved underneath
`DIDescriptor`, but for now I'm aiming mostly to match the status quo.
llvm-svn: 228640
I realized that my early fix for this was overly complicated. Rather than scatter checks around in a bunch of places, just exit early when we visit the poll function itself.
Thinking about it a bit, the whole inlining mechanism used with gc.safepoint_poll could probably be cleaned up a bit. Originally, poll insertion was fused with gc relocation rewriting. It might be worth going back to see if we can simplify the chain of events now that these two are seperated. As one thought, maybe it makes sense to rewrite calls inside the helper function before inlining it to the many callers. This would require us to visit the poll function before any other functions though..
llvm-svn: 228634
for any padding introduced by SROA. In particular, do not emit debug info
for an alloca that represents only the padding introduced by a previous
iteration.
Fixes PR22495.
llvm-svn: 228632
intermediate representation. This
- increases consistency by using the same granularity everywhere
- allows for pieces < 1 byte
- DW_OP_piece didn't actually allow storing an offset.
Part of PR22495.
llvm-svn: 228631
I just realized that the specialized metadata node patch I'm about to
commit won't compile on old compilers. Bump `hash_combine()`'s support
for non-variadic templates to 18 (I tested this by reversing the logic
in the #ifdef).
llvm-svn: 228629
Summary:
It's important that our users immediately know what gc.safepoint_poll
is. Also fix the style of the declaration of CreateGCStatepoint, in
preparation for another change that will wrap it.
Reviewers: reames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7517
llvm-svn: 228626
Remove handling for DW_TAG_constant. We started producing it in
r110656, but reverted that in r110876 without dropping the support.
Finish the job.
llvm-svn: 228623
`DIExpression` deals with `uint64_t`, so it doesn't make sense that
`createExpression()` is created from `int64_t`. Switch to `uint64_t` to
unify them.
I've temporarily left in the `int64_t` version, which forwards to the
`uint64_t` version. I'll delete it once I've updated the callers.
llvm-svn: 228619
These tests the two optimizations for backedge insertion currently implemented and the split backedge flag which is currently off by default.
llvm-svn: 228617
Without a valid data layout, deferenceable(N) doesn't get parsed or
propagated. Since this is the key item we are testing, add a dependency
on the pass.
Differential Revision: http://reviews.llvm.org/D7508
llvm-svn: 228611
This is just adding really simple tests which should have been part of the original submission. When doing so, I discovered that I'd mistakenly removed required pieces when preparing the patch for upstream submission. I fixed two such bugs in this submission.
llvm-svn: 228610
While a theoretical GC might change dereferenceability on collection,
there is no such known collector and no need to account for the case
with a flag yet.
Differential Revision: http://reviews.llvm.org/D7454
llvm-svn: 228606
5 minutes is an eternity, so try to strike a better balance between
waiting long enough for any reasonable module build and not so long that
users kill the process because they think it's hanging.
Also give the client a way to delete the lock file after a timeout.
llvm-svn: 228603
Make use of the newly introduced inst_range to clean up two loops. Clean
up a third one while at it.
Differential Revision: http://reviews.llvm.org/D7455
llvm-svn: 228596
When creating a scev for sext({X,+,Y}), scev checks if the expression
is equivalent to {sext X,+,zext Y}. If it can prove that, it also
tags the original {X,+,Y} as <nsw>, which is not correct.
In the test case I run `-scalar-evolution` twice because the bug
manifests only once SCEV has run through and seen the `sext`
expressions (and then does a in-place mutation on {X,+,Y}).
Differential Revision: http://reviews.llvm.org/D7495
llvm-svn: 228586
As far as I can tell r228568 was the right workaround, and r228567 was
unnecessary. If reverting this causes problems on the bots I'll reinstate it.
llvm-svn: 228585
veqv (vector equivalence)
vnand
vorc
I increased the AddedComplexity for these instructions to 500 to ensure they are generated instead of issuing other VSX instructions.
Phabricator review: http://reviews.llvm.org/D7469
llvm-svn: 228580
For the attached test case different types are used in the ICmpInst
and SelectInst that represent the min/max expressions. However, if the
ICmpInst type is smaller a comparison with the sign/zero extended
operands would have yielded the same result. This situation might
arise after the instruction combination pass was applied.
Differential Revision: http://reviews.llvm.org/D7338
llvm-svn: 228572
Apparently gcc-4.7.2 is touchy about 'this' appearing in a lambda capture list
along with other captures. I've rewritten my captures to try to avoid the issue.
llvm-svn: 228567
wrong basic block.
This would happen when the result of an invoke was used by a phi instruction
in the invoke's normal destination block. An instruction to reload the invoke's
value would get inserted before the critical edge was split and a new basic
block (which is the correct insertion point for the reload) was created. This
commit fixes the bug by splitting the critical edge before all the reload
instructions are inserted.
Also, hoist up the code which computes the insertion point to the only place
that need that computation.
rdar://problem/15978721
llvm-svn: 228566
Some parts of DeadArgElim were only considering the individual fields
of StructTypes separately, but others (where insertvalue &
extractvalue instructions occur) also looked into ArrayTypes.
This one is an actual bug; the mismatch can lead to an argument being
considered used by a return sub-value that isn't being tracked (and
hence is dead by default). It then gets incorrectly eliminated.
llvm-svn: 228559
Previously, a non-extractvalue use of an aggregate return value meant
the entire return was considered live (the algorithm gave up
entirely). This was correct, but conservative. It's better to actually
look at that Use, making the analysis results apply to all sub-values
under consideration.
E.g.
%val = call { i32, i32 } @whatever()
[...]
ret { i32, i32 } %val
The return is using the entire aggregate (sub-values 0 and 1). We can
still simplify @whatever if we can prove that this return is itself
unused.
Also unifies the logic slightly between aggregate and non-aggregate
cases..
llvm-svn: 228558
This patch refactors a key piece of the Orc APIs: It removes the
*::getSymbolAddress and *::lookupSymbolAddressIn methods, which returned target
addresses (uint64_ts), and replaces them with *::findSymbol and *::findSymbolIn
respectively, which return instances of the new JITSymbol type. Unlike the old
methods, calling findSymbol or findSymbolIn does not cause the symbol to be
immediately materialized when found. Instead, the symbol will be materialized
if/when the getAddress method is called on the returned JITSymbol. This allows
us to query for the existence of symbols without actually materializing them. In
the future I expect more information to be attached to the JITSymbol class, for
example whether the returned symbol is a weak or strong definition. This will
allow us to properly handle weak symbols and multiple definitions.
llvm-svn: 228557
Make assume (load (call|invoke) != null) set nonNull return attribute
for the call and invoke. Also include tests.
Differential Revision: http://reviews.llvm.org/D7107
llvm-svn: 228556
add recurrences don't overflow.
This change makes the optimization more restrictive. It still assumes
that an overflowing `add nsw` is undefined behavior; and this change
will need revisiting once we have a consistent semantics for poison
values.
Differential Revision: http://reviews.llvm.org/D7331
llvm-svn: 228552
Dumping a symbol often requires access to data that isn't inside
the symbol hierarchy, but which is only accessible through the
top-level session. This patch is a pure interface change to give
symbols a reference to the session.
llvm-svn: 228542
Summary:
The alias.scope metadata represents sets of things an instruction might
alias with. When generically combining the metadata from two
instructions the result must be the union of the original sets, because
the new instruction might alias with anything any of the original
instructions aliased with.
Reviewers: hfinkel
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7490
llvm-svn: 228525
Gather and Scatter are new introduced intrinsics, comming after recently implemented masked load and store.
This is the first patch for Gather and Scatter intrinsics. It includes only the syntax, parsing and verification.
Gather and Scatter intrinsics allow to perform multiple memory accesses (read/write) in one vector instruction.
The intrinsics are not target specific and will have the following syntax:
Gather:
declare <16 x i32> @llvm.masked.gather.v16i32(<16 x i32*> <vector of ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x i32> <passthru>)
declare <8 x float> @llvm.masked.gather.v8f32(<8 x float*><vector of ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float><passthru>)
Scatter:
declare void @llvm.masked.scatter.v8i32(<8 x i32><vector value to be stored> , <8 x i32*><vector of ptrs> , i32 <alignment>, <8 x i1> <mask>)
declare void @llvm.masked.scatter.v16i32(<16 x i32> <vector value to be stored> , <16 x i32*> <vector of ptrs>, i32 <alignment>, <16 x i1><mask> )
Vector of ptrs - a set of source/destination addresses, to load/store the value.
Mask - switches on/off vector lanes to prevent memory access for switched-off lanes
vector of ptrs, value and mask should have the same vector width.
These are code examples where gather / scatter should be used and will allow function vectorization
;void foo1(int * restrict A, int * restrict B, int * restrict C) {
; for (int i=0; i<SIZE; i++) {
; A[i] = B[C[i]];
; }
;}
;void foo3(int * restrict A, int * restrict B) {
; for (int i=0; i<SIZE; i++) {
; A[B[i]] = i+5;
; }
;}
Tests will come in the following patches, with CodeGen and Vectorizer.
http://reviews.llvm.org/D7433
llvm-svn: 228521
While various DAG combines try to guarantee that a vector SETCC
operation will have the same output size as input, there's nothing
intrinsic to either creation or LegalizeTypes that actually guarantees
it, so the function needs to be ready to handle a mismatch.
Fortunately this is easy enough, just extend or truncate the naturally
compared result.
I couldn't reproduce the failure in other backends that I know have
SIMD, so it's probably only an issue for these two due to shared
heritage.
Should fix PR21645.
llvm-svn: 228518
This patch implements a few of the optional suggestions from the
initial patch comitting libpdb. In particular, it implements a
virtual function out of line for each of the concrete classes.
A few other minor cleanups exist as well, such as using override
instead of virtual, etc.
llvm-svn: 228516
The only difference between deleteIfDeadInstruction and
RecursivelyDeleteTriviallyDeadInstructions is that the former also
manually invalidates SCEV. That's unnecessary because SCEV automatically
gets informed when an instruction is deleted via a ValueHandle. NFC.
llvm-svn: 228508
heap. Problem identified by Guido Vranken. Changes differ from original
OpenBSD sources by not depending on non-portable reallocarray.
llvm-svn: 228507
different fields.
We can show that two GEPs off of the same (possibly multidimensional)
array of structs, into different fields, can't alias. Quoting:
For two GEPOperators GEP1 and GEP2, if we find that:
- both GEPs begin indexing from the exact same pointer;
- the last indices in both GEPs are constants, indexing into a struct;
- said indices are different, hence,the pointed-to fields are different;
- and both GEPs only index through arrays prior to that;
this lets us determine that the struct that GEP1 indexes into and the
struct that GEP2 indexes into must either precisely overlap or be
completely disjoint. Because they cannot partially overlap, indexing
into different non-overlapping fields of the struct will never alias.
The other BasicAA::aliasGEP rules worked in some cases, but not all
(for example, the i32x3 struct in the testcase).
We can add this simple ad-hoc rule to complement them.
rdar://19717375
Differential Revision: http://reviews.llvm.org/D7453
llvm-svn: 228498
COFF section flags are not idempotent:
'rd' will make a read-write section because 'd' implies write
'dr' will make a read-only section because 'r' disables write
llvm-svn: 228490
If a loop predecessor has an invoke as its terminator, and the return value
from that invoke is used to determine the loop iteration space, then we can't
insert a computation based on that value in the loop predecessor prior to the
terminator (oops). If there's such an invoke, or just no predecessor for that
matter, insert a new loop preheader.
llvm-svn: 228488
These were originally submitted as part of r228428, but this part
caused a build breakage in LLVMConfig. The library portion was
resubmitted independently since it was not causing breakage.
There were two reasons this was causing the build to fail. The
first is that there were no Makefiles added for the PDB tests. And
the second is that the DebugInfoPDB library was only being built by
CMake behind an "if (MSVC)" check. This is wrong since this the
library hides platform specific details, and it was causing
LLVM-Config to not find the library when trying to build unittests.
llvm-svn: 228482
This tutorial builds on the lazy_codegen kaleidoscope/orc tutorial by making
a small set of changes (~75 lines diff) to defer ir-generation for function
definitions until functions are actually referenced.
llvm-svn: 228466
from a conditional branch fed by an add/sub/mul-with-overflow node.
We previously used the SDLoc of the overflow node, for no good reason.
In some cases, this led to the Bcc and B terminators having different
source orders, and DBG_VALUEs being inserted between them.
The real issue is with the code that can't handle DBG_VALUEs between
terminators: the few places affected by this will be fixed soon.
In the meantime, fixing the SDLoc is a positive change no matter what.
No tests, as I have no idea how to get .loc emitted for branches?
rdar://19347133
llvm-svn: 228463
Unfortunately, even with the workaround of disabling the linker TLS
optimizations in Clang restored (which has already been done), this still
breaks self-hosting on my P7 machine (-O3 -DNDEBUG -mcpu=native).
Bill is currently working on an alternate implementation to address the TLS
issue in a way that also fully elides the linker bug (which, unfortunately,
this approach did not fully), so I'm reverting this now.
llvm-svn: 228460
This tutorial builds on the initial kaleidoscope/orc tutorial by adding a
LazyEmittingLayer to the custom stack. This extra layer defers compilation
of modules in the JIT until they are statically referenced.
llvm-svn: 228459
This tutorial demonstrates a very basic custom Orc JIT stack that performs eager
compilation: All modules are CodeGen'd immediately upon being added to the JIT.
llvm-svn: 228456
Remove unnecessary restriction of 24-bits for line numbers in
`MDLocation`.
The rest of the debug info schema (with the exception of local
variables) uses 32-bits for line numbers. As I introduce the
specialized nodes, it makes sense to canonicalize on one size or the
other.
llvm-svn: 228455
An atomic store always make the target location fully initialized (in the
current implementation). It should not store origin. Initialized memory can't
have meaningful origin, and, due to origin granularity (4 bytes) there is a
chance that this extra store would overwrite meaningfull origin for an adjacent
location.
llvm-svn: 228444