Port `DIExpression::Operand` over to `MDExpression::ExprOperand`. The
logic is needed directly in `MDExpression` to support printing in
assembly.
llvm-svn: 229002
This commit makes the following changes:
- Stop issuing a warning when the triples' string representations do not match
exactly if the Triple objects generated from the strings compare equal.
- On Apple platforms, choose the triple that has the larger minimum version
number.
rdar://problem/16743513
Differential Revision: http://reviews.llvm.org/D7591
llvm-svn: 228999
This is much more efficient. In particular, the query with the user
instruction has to insert a false for every missing instruction into the
set. This is just a cleanup a long the way to fixing the underlying
algorithm problems here.
llvm-svn: 228994
When we try to estimate number of potentially removed instructions in
loop unroller, we analyze first N iterations and then scale the
computed number by TripCount/N. We should bail out early if N is 0.
llvm-svn: 228988
Using this in combination with -ffunction-sections allows LLVM to output a .o
file with mulitple sections named .text. This saves space by avoiding long
unique names of the form .text.<C++ mangled name>.
llvm-svn: 228980
Constant pool entries are uniqued by their contents regardless of their
type. This means that a pshufb can have a shuffle mask which isn't a
simple array of bytes.
The code path which attempts to decode the mask didn't check for
failure, causing PR22559.
llvm-svn: 228979
I'd modify my migration tool to account for this, but this is the only
instance of a typedef'd pointer type to a gep I found in the whole test
suite, so it didn't seem worthwhile.
llvm-svn: 228970
The PowerPC backend has long promoted some floating-point vector operations
(such as select) to integer vector operations. Unfortunately, this behavior was
broken by r216555. When using FP_EXTEND/FP_ROUND for promotions, we must check
that both the old and new types are floating-point types. Otherwise, we must
use BITCAST as we did prior to r216555 for everything.
llvm-svn: 228969
The sub-arrays for compile units have for a long time been initialized
to distinct temporary nodes with the `DW_TAG_base_type` tag, with no
other operands. These invalid `DIBasicType`s are later replaced with
appropriate arrays.
This seems like a poor man's assertion that the arrays do eventually get
replaced. These days, temporaries in the graph will cause assertions
when writing bitcode or assembly, so this isn't necessary. Use
temporary empty tuples instead.
Note that the whole idea of using temporaries and then replacing them
later is wasteful here. We never actually want to merge compile units
by uniquing based on content. Compile units should use `getDistinct()`
instead of `get()`, and then their operands can be freely replaced later
on.
llvm-svn: 228967
Frequently you only want to iterate over children of a specific
type (e.g. functions). Previously you would get back a generic
interface that allowed iteration over the base symbol type,
which you would have to dyn_cast<> each one of. With this patch,
we allow the user to specify the concrete type as a template
parameter, and it will return an iterator which returns instances
of the concrete type directly.
llvm-svn: 228960
Summary:
Implement the bulk of returning values in Mips fast-isel
Test Plan:
reatabi.ll
Passes test-suite at -O0,-O2 and with mips32r2 and mips32r1.
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: llvm-commits, aemerson, rfuhler
Differential Revision: http://reviews.llvm.org/D5920
llvm-svn: 228958
Summary:
Instances of the AssumptionCache are per function, so we can't re-use
the same AssumptionCache instance when recursing in the CallAnalyzer to
analyze a different function. Instead we have to pass the
AssumptionCacheTracker to the CallAnalyzer so it can get the right
AssumptionCache on demand.
Reviewers: hfinkel
Subscribers: llvm-commits, hans
Differential Revision: http://reviews.llvm.org/D7533
llvm-svn: 228957
bfd creates the output file early, so calling exit(0) is not enough, the file needs to be explicitly deleted.
Patch by: H.J. Lu <hjl.tools@gmail.com>
llvm-svn: 228946
We can't solve the full subgraph isomorphism problem. But we can
allow obvious cases, where for example two instructions of different
types are out of order. Due to them having different types/opcodes,
there is no ambiguity.
llvm-svn: 228931
Should be no functional change, since most of the logic removed was
completely pointless (after some previous refactoring) and the rest
duplicated elsewhere.
Patch by Kamil Rytarowski.
llvm-svn: 228926
Now that SimplifyCFG uses TTI for the cost heuristic, we can teach BasicTTIImpl
how to query TLI in order to get a more accurate cost for truncates and
zero-extends.
Before this patch, the basic cost heuristic in TargetTransformInfoImplCRTPBase
would have conservatively returned a 'default' TCC_Basic for all zero-extends,
and TCC_Free for truncates on native types.
This patch improves the heuristic so that we query TLI (if available) to get
more accurate answers. If TLI is available, then methods 'isZExtFree' and
'isTruncateFree' can be used to check if a zext/trunc is free for the target.
Added more test cases to SimplifyCFG/X86/speculate-cttz-ctlz.ll.
With this change, SimplifyCFG is now able to speculate a 'cheap' cttz/ctlz
immediately followed by a free zext/trunc.
Differential Revision: http://reviews.llvm.org/D7585
llvm-svn: 228923
Otherwise we will always select the generic version for e.g. unsigned
long if uint64_t is typedef'd to 'unsigned long long'. Also remove
enable_if hacks in favor of static_assert.
llvm-svn: 228921
The changes in r223113 (ARM modified-immediate syntax) have broken
instructions like:
mov r0, #~0xffffff00
The problem is that I've added a spurious range check on the immediate
operand to ensure that it lies between INT32_MIN and UINT32_MAX. While
this range check is correct in theory, it causes problems because the
operand is stored in an int64_t (by MC). So valid 32-bit constants like
\#~0xffffff00 become out of range. The solution is to simply remove this
range check. It is not possible to validate the range of the immediate
operand with the current setup because: 1) The operand is stored in an
int64_t by MC, 2) The immediate can be of the forms #imm, #-imm, #~imm
or even #((~imm)) etc. So we just chop the value to 32 bits and use it.
Also noted that the original range check was note tested by any of the
unit tests. I've added a new test to cover #~imm kind of operands.
Change-Id: I411e90d84312a2eff01b732bb238af536c4a7599
llvm-svn: 228920
I've built some tests in WebRTC with and without this change. With this change number of __tsan_read/write calls is reduced by 20-40%, binary size decreases by 5-10% and execution time drops by ~5%. For example:
$ ls -l old/modules_unittests new/modules_unittests
-rwxr-x--- 1 dvyukov 41708976 Jan 20 18:35 old/modules_unittests
-rwxr-x--- 1 dvyukov 38294008 Jan 20 18:29 new/modules_unittests
$ objdump -d old/modules_unittests | egrep "callq.*__tsan_(read|write|unaligned)" | wc -l
239871
$ objdump -d new/modules_unittests | egrep "callq.*__tsan_(read|write|unaligned)" | wc -l
148365
http://reviews.llvm.org/D7069
llvm-svn: 228917
Using KORTESTW for comparison i1 value with zero was wrong since the instruction tests 16 bits.
KORTESTW may be used with KSHIFTL+KSHIFTR that clean the 15 upper bits.
I removed (X86cmp i1, 0) pattern and zero-extend i1 to i8 and then use TESTB.
There are some cases where i1 is in the mask register and the upper bits are already zeroed.
Then KORTESTW is the better solution, but it is subject for optimization.
Meanwhile, I'm fixing the correctness issue.
llvm-svn: 228916
This gives a rough estimate of whether using pushes instead of movs is profitable, in terms of size.
We go over all calls in the MachineFunction and compute:
a) For each callsite that can not use pushes, the penalty of not having a reserved call frame.
b) For each callsite that can use pushes, the gain of actually replacing the movs with pushes (and the potential penalty of having to readjust the stack).
Differential Revision: http://reviews.llvm.org/D7561
llvm-svn: 228915
We used to do this DAG combine, but it's not always correct:
If the first fp_round isn't a value preserving truncation, it might
introduce a tie in the second fp_round, that wouldn't occur in the
single-step fp_round we want to fold to.
In other words, double rounding isn't the same as rounding.
Differential Revision: http://reviews.llvm.org/D7571
llvm-svn: 228911
We would crash if we couldn't locate a Function that either Location's
Value belonged to. Now we just print out a debug message and return
conservatively.
llvm-svn: 228901
Apparently some code finally started to tickle this after my
canonicalization changes to instcombine.
The bug stems from trying to form a vector type out of scalars that
aren't compatible at all. In this example, from x86_mmx values. The code
in the vectorizer that checks for reasonable types whas checking for
aggregates or vectors, but there are lots of other types that should
just never reach the vectorizer.
Debugging this was made more confusing by the lie in an assert in
VectorType::get() -- it isn't that the types are *primitive*. The types
must be integer, pointer, or floating point types. No other types are
allowed.
I've improved the assert and added a helper to the vectorizer to handle
the element type validity checks. It now re-uses the VectorType static
function and then further excludes weird target-specific types that we
probably shouldn't be touching here (x86_fp80 and ppc_fp128). Neither of
these are really reachable anyways (neither 80-bit nor 128-bit things
will get vectorized) but it seems better to just eagerly exclude such
nonesense.
I've added a test case, but while it definitely covers two of the paths
through this code there may be more paths that would benefit from test
coverage. I'm not familiar enough with the SLP vectorizer to synthesize
test cases for all of these, but was able to update the code itself by
inspection.
llvm-svn: 228899
On PowerPC, which has a full set of logical operations on (its multiple sets
of) condition-register bits, it is not profitable to break of complex
conditions feeding a jump into multiple jumps. We can turn off this feature of
CGP/SDAGBuilder by marking jumps as "expensive".
P7 test-suite speedups (no regressions):
MultiSource/Benchmarks/FreeBench/pcompress2/pcompress2
-0.626647% +/- 0.323583%
MultiSource/Benchmarks/Olden/power/power
-18.2821% +/- 8.06481%
llvm-svn: 228895
This reverts commit 228874. For some reason users reported
seeing Clang taking up 25+GB of memory and bringing down
machines with this change. Reverting until we figure it out.
llvm-svn: 228890
I mistakenly thought the liveness of each "RetVal(F, i)" depended only on F. It
actually depends on the index too, which means we need to be careful about how
the results are combined before return. In particular if a single Use returns
Live, that counts for the entire object, at the granularity we're considering.
llvm-svn: 228885
For Windows, filename_pos() tries to find the filename by
searching for separators after the last :. Instead, it should
really check for the only location that a : is valid, which is
in the second character, and search for separators after that.
llvm-svn: 228874
Summary:
When trying to canonicalize negative constants out of
multiplication expressions, we need to check that the
constant is not INT_MIN which cannot be negated.
Reviewers: mcrosier
Reviewed By: mcrosier
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7286
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 228872
Summary:
Move calls to get_input_file and release_input_file out of
getModuleForFile(). Otherwise release_input_file may end up
unmapping a view of the file while the view is still being
used by the Module (on 32-bit hosts).
Fix for PR22482.
Test Plan: Add test using --no-map-whole-files.
Reviewers: rafael, nlewycky
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7539
llvm-svn: 228842
Add new token factor node and its users to worklist if alias analysis is
turned on, in DAGCombiner::visitTokenFactor(). Alias analysis may cause
a lot of new token factors to be inserted into the DAG, and they need to
be optimized to avoid significant slow-downs.
Reviewed by Hal Finkel.
llvm-svn: 228841
This is a union of these commits:
* R600/SI: Enable more tests for VI which need no changes
* R600/SI: Enable V_BCNT tests for VI
Differences:
- v_bcnt_..._e32 -> _e64
- s_load_dword* inline offset is in bytes instead of dwords
* R600/SI: Enable all tests for VI which use S_LOAD_DWORD
The inline offset is changed from dwords to bytes.
* R600/SI: Enable LDS tests for VI
Differences:
- the s_load_dword inline offset changed from dwords to bytes
- the tests checked very little on CI, so they have been fixed to check all
instructions that "SI" checked
* R600/SI: Enable lshr tests for VI
* R600/SI: Fix divrem64 tests
- "v_lshl_64" was missing "b" before "64"
- added VI-NOT checks
* R600/SI: Enable the SI.tid test for VI
* R600/SI: Enable the frem test for VI
Also, the frem_f64 checking is added for CI-VI.
* R600/SI: Add VI tests for rsq.clamped
llvm-svn: 228830
This patch is a follow-up of r228826 (see code-review: D7506).
Now that SimplifyCFG uses TargetTransformInfo for cost analysis, we
have to fix the cost heuristic for intrinsic calls to cttz/ctlz.
This patch defines method 'getIntrinsicCost' in BasicTTIImpl: now, BasicTTIImpl
queries TLI to check if a call to cttz/ctlz is cheap for the target.
Added test cases in Transforms/SimplifyCFG/X86 to verify that on x86,
SimplifyCFG only speculates a call to cttz/ctlz if it is cheap.
Differential Revision: http://reviews.llvm.org/D7554
llvm-svn: 228829
analysis.
We're already using TTI in SimplifyCFG, so remove the hard-baked "cheapness"
heuristic and use TTI directly. Generally NFC intended, but we're using a slightly
different heuristic now so there is a slight test churn.
Test changes:
* combine-comparisons-by-cse.ll: Removed unneeded branch check.
* 2014-08-04-muls-it.ll: Test now doesn't branch but emits muleq.
* coalesce-subregs.ll: Superfluous block check.
* 2008-01-02-hoist-fp-add.ll: fadd is safe to speculate. Change to udiv.
* PhiBlockMerge.ll: Superfluous CFG checking code. Main checks still present.
* select-gep.ll: A variable GEP is not expensive, just TCC_Basic, according to the TTI.
llvm-svn: 228826
Summary:
Currently we have Mips32 and Mips64 disassemblers and this causes the target
triple to affect the disassembly despite all the relevant information being in
the ELF header. These implementations do not need to be separate.
This patch merges them together such that the appropriate tables are checked
for the subtarget (e.g. Mips64 is checked when GP64 is enabled).
Reviewers: vmedic
Reviewed By: vmedic
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7498
llvm-svn: 228825
A DAGRootSet models an induction variable being used in a rerollable
loop. For example:
x[i*3+0] = y1
x[i*3+1] = y2
x[i*3+2] = y3
Base instruction -> i*3
+---+----+
/ | \
ST[y1] +1 +2 <-- Roots
| |
ST[y2] ST[y3]
There may be multiple DAGRootSets, for example:
x[i*2+0] = ... (1)
x[i*2+1] = ... (1)
x[i*2+4] = ... (2)
x[i*2+5] = ... (2)
x[(i+1234)*2+5678] = ... (3)
x[(i+1234)*2+5679] = ... (3)
This concept is similar to the "Scale" member used previously, but allows
multiple independent sets of roots based off the same induction variable.
llvm-svn: 228821
This splits collecting information from actually performing the transformation, so that we can add a heuristic in between the two.
NFC.
Differential Revision: http://reviews.llvm.org/D7497
llvm-svn: 228817
The NodeMetadata are maintained in an incremental way. When an edge between
2 nodes has its cost updated, in the course of graph reduction for example,
the NodeMetadata need first to have the old edge cost removed, then the new
edge cost added. Only once the NodeMetadata have been fully updated, it
becomes safe to consider promoting the nodes to the
ConservativelyAllocatable or OptimallyReducible sets. Previously, this
promotion was occuring right after the removing the old cost, and this was
breaking the assumption that a ConservativelyAllocatable should not be
spilled.
This patch also adds asserts to:
- enforces the invariant that a node's reduction can not be downgraded,
- only not provably allocatable or optimally reducible nodes can be spilled.
llvm-svn: 228816
This allows IDEs to recognize the entire set of header files for
each of the core LLVM projects.
Differential Revision: http://reviews.llvm.org/D7526
Reviewed By: Chris Bieneman
llvm-svn: 228798
Add handling for __llvm_coverage_mapping to the InstrProfiling
pass. We need to make sure the constant and any profile names it
refers to are in the correct sections, which is easier and cleaner to
do here where we have to know about profiling sections anyway.
This is really tricky to test without a frontend, so I'm committing
the test for the fix in clang. If anyone knows a good way to test this
within LLVM, please let me know.
Fixes PR22531.
llvm-svn: 228793
If the landingpad of the invoke is using a personality function that
catches asynch exceptions, then it can catch a trap.
Also add some landingpads to invalid LLVM IR test cases that lack them.
Over-the-shoulder reviewed by David Majnemer.
llvm-svn: 228782