This reverts commit r227003. Support for addition/subtraction and
various other operations for the i128 data type will be added in a
future commit based on the review D7143.
llvm-svn: 227082
-no-exec-stack. This was due to it not deriving from the correct
asm info base class and missing the override for the exec
stack section query. Added another line to the noexec test
line to make sure this doesn't regress.
llvm-svn: 227074
Test by Nemanja Ivanovic.
Since ppc64le implies POWER8 as a minimum, it makes sense that the
same features are included. Since the pwr8 processor model will likely
be getting new features until the implementation is complete, I
created a new list to add these updates to. This will include them in
both pwr8 and ppc64le.
Furthermore, it seems that it would make sense to compose the feature
lists for other processor models (pwr3 and up). Per discussion in the
review, I will make this change in a subsequent patch.
In order to test the changes, I've added an additional run step to
test cases that specify -march=ppc64le -mcpu=pwr8 to omit the -mcpu
option. Since the feature lists are the same, the behaviour should be
unchanged.
llvm-svn: 227053
- Added KSHIFTB/D/Q for skx
- Added KORTESTB/D/Q for skx
- Fixed store operation for v8i1 type for KNL
- Store size of v8i1, v4i1 and v2i1 are changed to 8 bits
llvm-svn: 227043
Summary:
V8->V9:
- cleanup tests
V7->V8:
- addressed feedback from David:
- switched to range-based 'for' loops
- fixed formatting of tests
V6->V7:
- rebased and adjusted AsmPrinter args
- CamelCased .td, fixed formatting, cleaned up names, removed unused patterns
- diffstat: 3 files changed, 203 insertions(+), 227 deletions(-)
V5->V6:
- addressed feedback from Chandler:
- reinstated full verbose standard banner in all files
- fixed variables that were not in CamelCase
- fixed names of #ifdef in header files
- removed redundant braces in if/else chains with single statements
- fixed comments
- removed trailing empty line
- dropped debug annotations from tests
- diffstat of these changes:
46 files changed, 456 insertions(+), 469 deletions(-)
V4->V5:
- fix setLoadExtAction() interface
- clang-formated all where it made sense
V3->V4:
- added CODE_OWNERS entry for BPF backend
V2->V3:
- fix metadata in tests
V1->V2:
- addressed feedback from Tom and Matt
- removed top level change to configure (now everything via 'experimental-backend')
- reworked error reporting via DiagnosticInfo (similar to R600)
- added few more tests
- added cmake build
- added Triple::bpf
- tested on linux and darwin
V1 cover letter:
---------------------
recently linux gained "universal in-kernel virtual machine" which is called
eBPF or extended BPF. The name comes from "Berkeley Packet Filter", since
new instruction set is based on it.
This patch adds a new backend that emits extended BPF instruction set.
The concept and development are covered by the following articles:
http://lwn.net/Articles/599755/http://lwn.net/Articles/575531/http://lwn.net/Articles/603983/http://lwn.net/Articles/606089/http://lwn.net/Articles/612878/
One of use cases: dtrace/systemtap alternative.
bpf syscall manpage:
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=b4fc1a460f3017e958e6a8ea560ea0afd91bf6fe
instruction set description and differences vs classic BPF:
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/networking/filter.txt
Short summary of instruction set:
- 64-bit registers
R0 - return value from in-kernel function, and exit value for BPF program
R1 - R5 - arguments from BPF program to in-kernel function
R6 - R9 - callee saved registers that in-kernel function will preserve
R10 - read-only frame pointer to access stack
- two-operand instructions like +, -, *, mov, load/store
- implicit prologue/epilogue (invisible stack pointer)
- no floating point, no simd
Short history of extended BPF in kernel:
interpreter in 3.15, x64 JIT in 3.16, arm64 JIT, verifier, bpf syscall in 3.18, more to come in the future.
It's a very small and simple backend.
There is no support for global variables, arbitrary function calls, floating point, varargs,
exceptions, indirect jumps, arbitrary pointer arithmetic, alloca, etc.
From C front-end point of view it's very restricted. It's done on purpose, since kernel
rejects all programs that it cannot prove safe. It rejects programs with loops
and with memory accesses via arbitrary pointers. When kernel accepts the program it is
guaranteed that program will terminate and will not crash the kernel.
This patch implements all 'must have' bits. There are several things on TODO list,
so this is not the end of development.
Most of the code is a boiler plate code, copy-pasted from other backends.
Only odd things are lack or < and <= instructions, specialized load_byte intrinsics
and 'compare and goto' as single instruction.
Current instruction set is fixed, but more instructions can be added in the future.
Signed-off-by: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Subscribers: majnemer, chandlerc, echristo, joerg, pete, rengolin, kristof.beyls, arsenm, t.p.northover, tstellarAMD, aemerson, llvm-commits
Differential Revision: http://reviews.llvm.org/D6494
llvm-svn: 227008
Summary:
At the moment, address calculation is taking the debug line info from the
address node (e.g. TargetGlobalAddress). When a function is called multiple
times, this results in output of the form:
.loc $first_call_location
.. address calculation ..
.. function call ..
.. address calculation ..
.loc $second_call_location
.. function call ..
.loc $first_call_location
.. address calculation ..
.loc $third_call_location
.. function call ..
This patch makes address calculations for function calls take the debug line
info for the call node and results in output of the form:
.loc $first_call_location
.. address calculation ..
.. function call ..
.loc $second_call_location
.. address calculation ..
.. function call ..
.loc $third_call_location
.. address calculation ..
.. function call ..
All other address calculations continue to use the address node.
Test Plan: Fixes test/DebugInfo/multiline.ll on a mips host.
Subscribers: dblaikie, llvm-commits
Differential Revision: http://reviews.llvm.org/D7050
llvm-svn: 227005
Summary:
In addition to the included tests, this fixes
test/CodeGen/Generic/i128-addsub.ll on a mips64 host.
Reviewers: atanasyan, sagar, vmedic
Reviewed By: vmedic
Subscribers: sdkie, llvm-commits
Differential Revision: http://reviews.llvm.org/D6610
llvm-svn: 227003
manager to support the actual uses of it. =]
When I ported instcombine to the new pass manager I discover that it
didn't work because TLI wasn't available in the right places. This is
a somewhat surprising and/or subtle aspect of the new pass manager
design that came up before but I think is useful to be reminded of:
While the new pass manager *allows* a function pass to query a module
analysis, it requires that the module analysis is already run and cached
prior to the function pass manager starting up, possibly with
a 'require<foo>' style utility in the pass pipeline. This is an
intentional hurdle because using a module analysis from a function pass
*requires* that the module analysis is run prior to entering the
function pass manager. Otherwise the other functions in the module could
be in who-knows-what state, etc.
A somewhat surprising consequence of this design decision (at least to
me) is that you have to design a function pass that leverages
a module analysis to do so as an optional feature. Even if that means
your function pass does no work in the absence of the module analysis,
you have to handle that possibility and remain conservatively correct.
This is a natural consequence of things being able to invalidate the
module analysis and us being unable to re-run it. And it's a generally
good thing because it lets us reorder passes arbitrarily without
breaking correctness, etc.
This ends up causing problems in one case. What if we have a module
analysis that is *definitionally* impossible to invalidate. In the
places this might come up, the analysis is usually also definitionally
trivial to run even while other transformation passes run on the module,
regardless of the state of anything. And so, it follows that it is
natural to have a hard requirement on such analyses from a function
pass.
It turns out, that TargetLibraryInfo is just such an analysis, and
InstCombine has a hard requirement on it.
The approach I've taken here is to produce an analysis that models this
flexibility by making it both a module and a function analysis. This
exposes the fact that it is in fact safe to compute at any point. We can
even make it a valid CGSCC analysis at some point if that is useful.
However, we don't want to have a copy of the actual target library info
state for each function! This state is specific to the triple. The
somewhat direct and blunt approach here is to turn TLI into a pimpl,
with the state and mutators in the implementation class and the query
routines primarily in the wrapper. Then the analysis can lazily
construct and cache the implementations, keyed on the triple, and
on-demand produce wrappers of them for each function.
One minor annoyance is that we will end up with a wrapper for each
function in the module. While this is a bit wasteful (one pointer per
function) it seems tolerable. And it has the advantage of ensuring that
we pay the absolute minimum synchronization cost to access this
information should we end up with a nice parallel function pass manager
in the future. We could look into trying to mark when analysis results
are especially cheap to recompute and more eagerly GC-ing the cached
results, or we could look at supporting a variant of analyses whose
results are specifically *not* cached and expected to just be used and
discarded by the consumer. Either way, these seem like incremental
enhancements that should happen when we start profiling the memory and
CPU usage of the new pass manager and not before.
The other minor annoyance is that if we end up using the TLI in both
a module pass and a function pass, those will be produced by two
separate analyses, and thus will point to separate copies of the
implementation state. While a minor issue, I dislike this and would like
to find a way to cleanly allow a single analysis instance to be used
across multiple IR unit managers. But I don't have a good solution to
this today, and I don't want to hold up all of the work waiting to come
up with one. This too seems like a reasonable thing to incrementally
improve later.
llvm-svn: 226981
This patch adds the missing LD[U]RSW variants to the load store optimizer, so
that we generate LDPSW when possible.
<rdar://problem/19583480>
llvm-svn: 226978
Handle the poor codegen for i64/x86xmm->v2i64 (%mm -> %xmm) moves. Instead of
using stack store/load pair to do the job, use scalar_to_vector directly, which
in the MMX case can use movq2dq. This was the current behavior prior to
improvements for vector legalization of extloads in r213897.
This commit fixes the regression and as a side-effect also remove some
unnecessary shuffles.
In the new attached testcase, we go from:
pshufw $-18, (%rdi), %mm0
movq %mm0, -8(%rsp)
movq -8(%rsp), %xmm0
pshufd $-44, %xmm0, %xmm0
movd %xmm0, %eax
...
To:
pshufw $-18, (%rdi), %mm0
movq2dq %mm0, %xmm0
movd %xmm0, %eax
...
Differential Revision: http://reviews.llvm.org/D7126
rdar://problem/19413324
llvm-svn: 226953
We used to do this promotion during DAG legalization, but this
caused an infinite loop in ExpandUnalignedLoad() because it assumed
that i64 loads were legal if i64 was a legal type.
It also seems better to report i64 loads as legal, since they actually
are and we were just promoting them to simplify our tablegen files.
llvm-svn: 226945
This mostly reverts commit r222062 and replaces it with a new enum. At
some point this enum will grow at least for other MSVC EH personalities.
Also beefs up the way we were sniffing the personality function.
Previously we would emit the Itanium LSDA despite using
__C_specific_handler.
Reviewers: majnemer
Differential Revision: http://reviews.llvm.org/D6987
llvm-svn: 226920
Summary:
We used to silently ignore any empty .module's and we used to give an error saying that we found
an "unexpected token at start of statement" when the value of the option wasn't an identifier (e.g. if it was a number).
We now give an error saying that we "expected .module option identifier" in both of those cases.
I also fixed the other tests in mips-abi-bad.s, which all seemed to be broken.
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7095
llvm-svn: 226905
v2: add and enable tests for SI
Signed-off-by: Jan Vesely <jan.vesely@rutgers.edu>
Reviewed-by: Matt Arsenault <Matthew.Arsenault@amd.com>
llvm-svn: 226881
optimizations can handle removing the Hi part operations.
The generated code is identical for R600, ~10% icount reduction for SI
v2: rebase
Signed-off-by: Jan Vesely <jan.vesely@rutgers.edu>
Reviewed-by: Matt Arsenault <Matthew.Arsenault@amd.com>
llvm-svn: 226879
Minor tweak now that D7042 is complete, we can enable stack folding for (V)MOVDDUP and do proper testing.
Added missing AVX ymm folding patterns and fixed alignment for AVX VMOVSLDUP / VMOVSHDUP.
llvm-svn: 226873
Currently, we're adding a uint64_t describing the current subtarget so
that matching can check whether the specified register is valid.
However, we want to move to a bitset for those bits (x86 has more than
64 of them).
This can't live in a union so it's probably better to do the checks
early (especially as there are only 3 of them).
llvm-svn: 226841
The problem occurs when after vectorization we have type
<2 x i32>. This type is promoted to <2 x i64> and then requires
additional efforts for expanding loads and truncating stores.
I added EXPAND / TRUNCATE attributes to the masked load/store
SDNodes. The code now contains additional shuffles.
I've prepared changes in the cost estimation for masked memory
operations, it will be submitted separately.
llvm-svn: 226808
Windows supports a restricted set of relocations (compared to ARM ELF). In some
cases, we may end up generating an unsupported relocation. This can occur with
bad input to the assembler in particular (the frontend should never generate
code that cannot be compiled). Generate an error rather than just aborting.
The change in the API is driven by the desire to provide a slightly more helpful
message for debugging purposes.
llvm-svn: 226779
Added most of the missing integer vector folding patterns for SSE (to SSE42) and AVX1.
The most useful of these are probably the i32/i64 extraction, i8/i16/i32/i64 insertions, zero/sign extension, unsigned saturation subtractions, i64 subtractions and the variable mask blends (pblendvb) - others include CLMUL, SSE42 string comparisons and bit tests.
Differential Revision: http://reviews.llvm.org/D7094
llvm-svn: 226745
This patch adds shuffle matching for the SSE3 MOVDDUP, MOVSLDUP and MOVSHDUP instructions. The big use of these being that they avoid many single source shuffles from needing to use (pre-AVX) dual source instructions such as SHUFPD/SHUFPS: causing extra moves and preventing load folds.
Adding these instructions uncovered an issue in XFormVExtractWithShuffleIntoLoad which crashed on single operand shuffle instructions (now fixed). It also involved fixing getTargetShuffleMask to correctly identify theses instructions as unary shuffles.
Also adds a missing tablegen pattern for MOVDDUP.
Differential Revision: http://reviews.llvm.org/D7042
llvm-svn: 226716
Thumbv4t does not have lo->lo copies other than MOVS,
and that can't be predicated. So emit MOVS when needed
and bail if there's a predicate.
http://reviews.llvm.org/D6592
llvm-svn: 226711
This fixes it for SI. It also removes the pattern
used previously for Evergreen for f32. I'm not sure
if the the new R600 output is better or not, but it uses
1 fewer instructions if BFI is available.
llvm-svn: 226682
Now that we can fully specify extload legality, we can declare them
legal for the PMOVSX/PMOVZX instructions. This for instance enables
a DAGCombine to fire on code such as
(and (<zextload-equivalent> ...), <redundant mask>)
to turn it into:
(zextload ...)
as seen in the testcase changes.
There is one regression, in widen_load-2.ll: we're no longer able
to do store-to-load forwarding with illegal extload memory types.
This will be addressed separately.
Differential Revision: http://reviews.llvm.org/D6533
llvm-svn: 226676
AAPCS64 says that it's up to the platform to specify whether x18 is
reserved, and a first step on that way is to add a flag controlling
it.
From: Andrew Turner <andrew@fubar.geek.nz>
llvm-svn: 226664
Implement microMIPS 16-bit unconditional branch instruction B.
Implemented 16-bit microMIPS unconditional instruction has real name B16, and
B is an alias which expands to either B16 or BEQ according to the rules:
b 256 --> b16 256 # R_MICROMIPS_PC10_S1
b 12256 --> beq $zero, $zero, 12256 # R_MICROMIPS_PC16_S1
b label --> beq $zero, $zero, label # R_MICROMIPS_PC16_S1
Differential Revision: http://reviews.llvm.org/D3514
llvm-svn: 226657
We were passing the scratch buffer address to the shaders via user sgprs,
but now we use external symbols and have the driver patch the shader
using reloc information.
llvm-svn: 226586
We don't have a good way of legalizing this if the frame index offset
is more than the 12-bits, which is size of MUBUF's offset field, so
now we store the frame index in the vaddr field.
llvm-svn: 226584
Implement microMIPS 16-bit unconditional branch instruction B.
Implemented 16-bit microMIPS unconditional instruction has real name B16, and
B is an alias which expands to either B16 or BEQ according to the rules:
b 256 --> b16 256 # R_MICROMIPS_PC10_S1
b 12256 --> beq $zero, $zero, 12256 # R_MICROMIPS_PC16_S1
b label --> beq $zero, $zero, label # R_MICROMIPS_PC16_S1
Differential Revision: http://reviews.llvm.org/D3514
llvm-svn: 226577
This commits adds the octeon branch instructions bbit0/bbit032/bbit1/bbit132.
It also includes patterns for instruction selection and test cases.
Reviewed by D. Sanders
llvm-svn: 226573
Now that we can create much more exhaustive X86 memory folding tests, this patch adds the missing AVX1/F16C floating point instruction stack foldings we can easily test for including the scalar intrinsics (add, div, max, min, mul, sub), conversions float/int to double, half precision conversions, rounding, dot product and bit test. The patch also adds a couple of obviously missing SSE instructions (more to follow once we have full SSE testing).
Now that scalar folding is working it broke a very old test (2006-10-07-ScalarSSEMiscompile.ll) - this test appears to make no sense as its trying to ensure that a scalar subtraction isn't folded as it 'would zero the top elts of the loaded vector' - this test just appears to be wrong to me.
Differential Revision: http://reviews.llvm.org/D7055
llvm-svn: 226513
The fixes are to note that AArch64 has additional restrictions on when local
relocations can be used. In particular, ld64 requires that relocations to
cstring/cfstrings use linker visible symbols.
Original message:
In an assembly expression like
bar:
.long L0 + 1
the intended semantics is that bar will contain a pointer one byte past L0.
In sections that are merged by content (strings, 4 byte constants, etc), a
single position in the section doesn't give the linker enough information.
For example, it would not be able to tell a relocation must point to the
end of a string, since that would look just like the start of the next.
The solution used in ELF to use relocation with symbols if there is a non-zero
addend.
In MachO before this patch we would just keep all symbols in some sections.
This would miss some cases (only cstrings on x86_64 were implemented) and was
inefficient since most relocations have an addend of 0 and can be represented
without the symbol.
This patch implements the non-zero addend logic for MachO too.
llvm-svn: 226503
Original patch by Luke Iannini. Minor improvements and test added by
Erik de Castro Lopo.
Differential Revision: http://reviews.llvm.org/D6877
From: Erik de Castro Lopo <erikd@mega-nerd.com>
llvm-svn: 226473
No change in this commit, but clang was changed to also produce trivial comdats when
needed.
Original message:
Don't create new comdats in CodeGen.
This patch stops the implicit creation of comdats during codegen.
Clang now sets the comdat explicitly when it is required. With this patch clang and gcc
now produce the same result in pr19848.
llvm-svn: 226467
and updated.
This may appear to remove handling for things like alias analysis when
splitting critical edges here, but in fact no callers of SplitEdge
relied on this. Similarly, all of them wanted to preserve LCSSA if there
was any update of the loop info. That makes the interface much simpler.
With this, all of BasicBlockUtils.h is free of Pass arguments and
prepared for the new pass manager. This is tho majority of utilities
that relied on pass arguments.
llvm-svn: 226459
We don't need to exclude patchpoints from the implicit r2 dependence in
FastISel because it is added as an implicit operand and, thus, should not
confuse that StackMap code.
By inspection / no test case.
llvm-svn: 226434
Our PPC64 ELF V2 call lowering logic added r2 as an operand to all direct call
instructions in order to represent the dependency on the TOC base pointer
value. Restricting this to ELF V2, however, does not seem to make sense: calls
under ELF V1 have the same dependence, and indirect calls have an r2 dependence
just as direct ones. Make sure the dependence is noted for all calls under both
ELF V1 and ELF V2.
llvm-svn: 226432
Instructions that have high-order TOC relocations always carry R2 as their base
register, so it does not matter whether we take the register from the
instruction or just hard-code it in PPCAsmPrinter. In the future, however, we
might want to apply these relocations to instructions using a different
register, so taking the register from the instruction is a better thing to do.
No change in functionality here, however.
llvm-svn: 226403
The default calling convention specified by the PPC64 ELF (V1 and V2) ABI is
designed to work with both prototyped and non-prototyped/varargs functions. As
a result, GPRs and stack space are allocated for every argument, even those
that are passed in floating-point or vector registers.
GlobalOpt::OptimizeFunctions will transform local non-varargs functions (that
do not have their address taken) to use the 'fast' calling convention.
When functions are using the 'fast' calling convention, don't allocate GPRs for
arguments passed in other types of registers, and don't allocate stack space for
arguments passed in registers. Other changes for the fast calling convention
may be added in the future.
llvm-svn: 226399
a LoopInfoWrapperPass to wire the object up to the legacy pass manager.
This switches all the clients of LoopInfo over and paves the way to port
LoopInfo to the new pass manager. No functionality change is intended
with this iteration.
llvm-svn: 226373
R11's status is the same under both the PPC64 ELF V1 and V2 ABIs: it is
reserved for use as an "environment pointer" for compilation models that
require such a thing. We don't, we also don't need a second scratch register,
and because we support only "local" patchpoint call targets, we might as well
let R11 be used for anyregcc patchpoints.
llvm-svn: 226369