the overloaded version of addPass which takes Pass*.
This change enables inserting the machine printer pass when the overloaded
version of addPass that takes Pass* is called to add a pass, instead of the
one which takes AnalysisID. I need this to prevent make-check tests from
failing when I commit another patch later.
llvm-svn: 239192
The main use of the YAML debug map format is for testing inside LLVM. If we have IR
files in the tests used to generate object files, then we obviously don't know the
addresses of the symbols inside the object files beforehand.
This change lets the YAML import lookup the addresses in the object files and rewrite
them. This will allow to have test that really don't need any binary input.
llvm-svn: 239189
Summary: This fixes the issue of multiple test suites opening the same file for writing.
Reviewers: clayborg, zturner
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D10284
llvm-svn: 239188
It will get a bit bigger in an upcoming commit. No need to have all
of that in the header.
Also move parseYAMLDebugMap() to the same place as the serialization
code. This way it will be able to share a private Context object with
it.
llvm-svn: 239185
when compiling with gcc or clang numerous warnings concerning the usage
of extern "C" linkage. All the __kmp_itt_sync* variables are declared
like: extern "C" type __kmp_itt_sync... = definition; through various macros.
This note from cppreference.com explains why this is a problem.
// From http://en.cppreference.com/w/cpp/language/language_linkage
extern "C" int x; // a declaration and not a definition
// The above line is equivalent to extern "C" { extern int x; }
extern "C" { int x; } // a declaration and definition
Since the __kmp_itt_* variables are being declared and defined, these variables
should use the bracketed version instead.
llvm-svn: 239184
Summary:
This change also adds the infrastructure required to specify the API
levels for which tests should be skipped.
Reviewers: chying, labath
Reviewed By: labath
Subscribers: tberghammer, lldb-commits
Differential Revision: http://reviews.llvm.org/D10282
llvm-svn: 239183
This test case uses too large addends in relocations. Now the test is correct.
Later we need to implement overflow checking to catch such cases.
llvm-svn: 239177
This reverts commit r239141. This commit was an attempt to reintroduce
a previous patch that broke many self-hosting bots with clang timeouts,
but it still has slowdown issues, at least on ARM, increasing the
compilation time (stage 2, clang's) by 5x.
llvm-svn: 239175
Summary:
urlparse.ParseResult.hostname has only lowercase characters even if the
input URL had uppercase characters. Since Android device IDs can have
uppercase characters as well, use urlparse.ParseResult.netloc instead
and extract the device ID from it.
This change also improves the error message when lookup of the Android
device's API fails.
Reviewers: chaoren
Reviewed By: chaoren
Subscribers: tberghammer, lldb-commits
Differential Revision: http://reviews.llvm.org/D10278
llvm-svn: 239173
This change is NFC because both the ``break;`` and the fall through end
up returning immediately. However, this helps clarify intent and also
ensures correctness in case more ``case`` blocks are added later.
llvm-svn: 239172
We would crash in the DeclPrinter trying to pretty-print the
static_assert message. C++1z-style assertions don't have a message so
we would crash.
This fixes PR23756.
llvm-svn: 239170
For targets with a free fneg, this fold is always a net loss if it
ends up duplicating the multiply, so definitely avoid it.
This might be true for some targets without a free fneg too, but
I'll leave that for future investigation.
llvm-svn: 239167
The new naming is (to me) much easier to understand. Here is a summary
of the new state of the world:
- '*Threshold' is the threshold for full unrolling. It is measured
against the estimated unrolled cost as computed by getUserCost in TTI
(or CodeMetrics, etc). We will exceed this threshold when unrolling
loops where unrolling exposes a significant degree of simplification
of the logic within the loop.
- '*PercentDynamicCostSavedThreshold' is the percentage of the loop's
estimated dynamic execution cost which needs to be saved by unrolling
to apply a discount to the estimated unrolled cost.
- '*DynamicCostSavingsDiscount' is the discount applied to the estimated
unrolling cost when the dynamic savings are expected to be high.
When actually analyzing the loop, we now produce both an estimated
unrolled cost, and an estimated rolled cost. The rolled cost is notably
a dynamic estimate based on our analysis of the expected execution of
each iteration.
While we're still working to build up the infrastructure for making
these estimates, to me it is much more clear *how* to make them better
when they have reasonably descriptive names. For example, we may want to
apply estimated (from heuristics or profiles) dynamic execution weights
to the *dynamic* cost estimates. If we start doing that, we would also
need to track the static unrolled cost and the dynamic unrolled cost, as
only the latter could reasonably be weighted by profile information.
This patch is sadly not without functionality change for the new unroll
analysis logic. Buried in the heuristic management were several things
that surprised me. For example, we never subtracted the optimized
instruction count off when comparing against the unroll heursistics!
I don't know if this just got lost somewhere along the way or what, but
with the new accounting of things, this is much easier to keep track of
and we use the post-simplification cost estimate to compare to the
thresholds, and use the dynamic cost reduction ratio to select whether
we can exceed the baseline threshold.
The old values of these flags also don't necessarily make sense. My
impression is that none of these thresholds or discounts have been tuned
yet, and so they're just arbitrary placehold numbers. As such, I've not
bothered to adjust for the fact that this is now a discount and not
a tow-tier threshold model. We need to tune all these values once the
logic is ready to be enabled.
Differential Revision: http://reviews.llvm.org/D9966
llvm-svn: 239164
Adds tests verifying the proper dirs are found in the Debian 8/GCC4.9
layout for sparc (32bit), sparc (32bit) with lib64 multilib, and
sparc64.
The test cases added here also cover r239047, which fixed the linker
paths.
llvm-svn: 239154
input / output with memory constraint.
One generally can't get address of a bit field, so the general solution is to
error on such cases. GCC does the same.
Patch by Andrey Bokhanko
Differential Revision: http://reviews.llvm.org/D10086
llvm-svn: 239153
The main effect of this is to fix anomalies where certain -mfpu options didn't
disable everything that they should causing strange behaviour when combined
with -mcpu or -march values that themselves enabled fpu subtarget features,
e.g. -mfpu=fpv5-dp-d16 with -march=armv7em previously behaved the same as
-mfpu=fpv5-sp-d16 due to fp-only-sp not being disabled.
Invalid -mfpu options now also give an error, which is consistent with the
handling of the .fpu directive.
Differential Revision: http://reviews.llvm.org/D10239
llvm-svn: 239152
These are added mainly for the benefit of clang, but this also means that they
are now allowed in .fpu directives and we emit the correct .fpu directive when
single-precision-only is used.
Differential Revision: http://reviews.llvm.org/D10238
llvm-svn: 239151
Add getFPUFeatures to TargetParser, which gets the list of subtarget features
that are enabled/disabled for each FPU, and use it when handling the .fpu
directive.
No functional change in this commit, though clang will start behaving
differently once it starts using this.
Differential Revision: http://reviews.llvm.org/D10237
llvm-svn: 239150
Before:
template <typename T>
auto aaaaaaaaaaaaaaaaaaaaaa(T t) -> decltype(eaaaaaaaaaaaaaaa<T>(t.a)
.aaaaaaaa());
After:
template <typename T>
auto aaaaaaaaaaaaaaaaaaaaaa(T t)
-> decltype(eaaaaaaaaaaaaaaa<T>(t.a).aaaaaaaa());
Also add a test case for a difficult template parsing case I stumbled accross.
Needs fixing.
llvm-svn: 239149
Setting the OSType in the ArchSpec triple is needed to correctly setup
up the register context plugin. ArchSpec::SetArchitecture, for Mach-O
only, sets the OSType. For ELF it was left to the ObjectFileELF to fill
in the missing OSType.
This change moves the ObjectFileELF logic into ArchSpec.
A new optional 'os' parameter has been added to SetArchitecture.
For ELF, this value is the from the ELF header.e_ident[EI_OSABI].
The default value is 0 or ELFOSABI_NONE.
The real work of determining the OSType was done by the ObjectFileELF
helper function GetOsFromOSABI. This logic has been moved
SetArchitecture.
GetOsFromOSABI has been commented as being deprectated. It is left in
to support asserts.
For ELF the vendor value returned from SetArchitecture should be
UnknownVendor. An unneeded resetting in ObjectFileELF has been removed
and replaced with an assert.
This fixes a problem reading a core file on FreeBSD/ARM because the spec
triple was arm-unknown-unknown.
Patch by Tom Rix.
Differential Revision: http://reviews.llvm.org/D9292
llvm-svn: 239148
Summary:
Only restoring AvailableFeatures is not enough and will lead to buggy behaviour.
For example, if we have a feature enabled and we ".set pop", the next time we try
to ".set" that feature nothing will happen because the "!(STI.getFeatureBits()[Feature])"
check will be false, because we didn't restore STI.FeatureBits.
In order to fix this, we need to make MipsAssemblerOptions remember the STI.FeatureBits
instead of the AvailableFeatures and then regenerate AvailableFeatures each time we ".set pop".
This is because, AFAIK, there is no way to convert from AvailableFeatures back to STI.FeatureBits,
but the reverse is possible by using ComputeAvailableFeatures(STI.FeatureBits).
I also moved the updating of AssemblerOptions inside the "if" statement in
setFeatureBits() and clearFeatureBits(), as there is no reason to update if
nothing changes.
Reviewers: dsanders, mkuper
Reviewed By: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9156
llvm-svn: 239144
isInductionPHI wants to calculate the stride based on the pointee size.
However, this is not possible when the pointee is zero sized.
This fixes PR23763.
llvm-svn: 239143
Also, moved test cases from CodeGen/X86/fold-buildvector-bug.ll into
CodeGen/X86/buildvec-insertvec.ll and regenerated CHECK lines using
update_llc_test_checks.py.
llvm-svn: 239142
I don't have the IR which is causing the build bot breakage but I can
postulate as to why they are timing out:
1. SimplifyWithOpReplaced was stripping flags from the simplified value.
2. visitSelectInstWithICmp was overriding SimplifyWithOpReplaced because
it's simplification wasn't correct.
3. InstCombine would revisit the add instruction and note that it can
rederive the flags.
4. By modifying the value, we chose to revisit instructions which reuse
the value. One of the instructions is the original select, causing
LLVM to never reach fixpoint.
Instead, strip the flags only when we are sure we are going to perform
the simplification.
llvm-svn: 239141