addl $12, %esp
popl %esi
popl %edi
popl %ebx
popl %ebp
jmpl *__Block_deallocator-L1$pb(%esi) # TAILCALL
The problem is the global base register is assigned GR32 register class. TCRETURNmi needs the registers making up the address mode to have the GR32_TC register class.
The *proper* fix is for X86DAGToDAGISel::getGlobalBaseReg() to return a copy from the global base register of the machine function rather than returning the register itself. But that has the potential of causing it to be coalesced to a more restrictive register class: GR32_TC. It can introduce additional copies and spills. For something as important the PIC base, it's not worth it especially since this is not an issue on 64-bit.
llvm-svn: 99455
--- Reverse-merging r99440 into '.':
U test/MC/AsmParser/X86/x86_32-bit_cat.s
U test/MC/AsmParser/X86/x86_32-encoding.s
U include/llvm/IntrinsicsX86.td
U include/llvm/CodeGen/SelectionDAGNodes.h
U lib/Target/X86/X86InstrSSE.td
U lib/Target/X86/X86ISelLowering.h
llvm-svn: 99450
not get an "Unknown immediate size" assert failure when used. All instructions
of this form have an 8-bit immediate. Also added a test case of an example
instruction that is of this form.
llvm-svn: 99435
ISD node. The only change in the generated isel code are comments
like:
< // Src: (X86dec_flag:i16 GR16:i16:$src)
---
> // Src: (X86dec_flag:i16:i32 GR16:i16:$src)
because now it knows that X86dec_flag returns both an i16 (for the result)
and an i32 (for EFLAGS) in this case. Wewt.
llvm-svn: 99369
This is work in progress. So far, SSE execution domain tables are added to
X86InstrInfo, and a skeleton pass is enabled with -sse-domain-fix.
llvm-svn: 99345
override prefix and only the r/m16 forms should have had that. Also for variant
one, the AT&T syntax, added suffixes to all forms. Also added the missing
64-bit form for 'CRC32 r64, r/m8'. Plus added test cases for all forms and
tweaked one test case to add the needed suffixes.
llvm-svn: 98980
to input patterns, we can fix X86ISD::CMP and X86ISD::BT as taking
two inputs (which have to be the same type) and *returning an i32*.
This is how the SDNodes get made in the graph, but we weren't able
to model it this way due to deficiencies in the pattern language.
Now we can change things like this:
def UCOM_FpIr80: FpI_<(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP,
- [(X86cmp RFP80:$lhs, RFP80:$rhs),
- (implicit EFLAGS)]>; // CC = ST(0) cmp ST(i)
+ [(set EFLAGS, (X86cmp RFP80:$lhs, RFP80:$rhs))]>;
and fix terrible crimes like this:
-def : Pat<(parallel (X86cmp GR8:$src1, 0), (implicit EFLAGS)),
+def : Pat<(X86cmp GR8:$src1, 0),
(TEST8rr GR8:$src1, GR8:$src1)>;
This relies on matching the result of TEST8rr (which is EFLAGS, which is
an implicit def) to the result of X86cmp, an i32.
llvm-svn: 98903
temporary workaround for matching inc/dec on x86_64 to the correct instruction.
- This hack will eventually be replaced with a robust mechanism for handling
matching instructions based on the available target features.
llvm-svn: 98858
- Although it would be nice to allow this decoupling, the assembler needs to be able to reason about MCSymbolRefExprs in too many places to make this viable. We can use a target specific encoding of the variant if this becomes an issue.
- This patch also extends llvm-mc to support parsing of the modifiers, as opposed to lumping them in with the symbol.
llvm-svn: 98592
32-bit indices. Instead of shuffling each element out of the index vector,
when all indices are needed, just store the input vector to the stack and
load the elements out.
llvm-svn: 98588