Add ELF relocations for the following fixups:
fixup_thumb_adr_pcrel_10 -> R_ARM_THM_PC8
fixup_thumb_cp -> R_ARM_THM_PC8
fixup_t2_adr_pcrel_12 -> R_ARM_THM_PREL_11_0
fixup_t2_ldst_pcrel_12 -> R_ARM_THM_PC12
While these relocations are short-ranged there is support in the open
source ELF linker's in binutils and soon to be in LLD. MC will no longer
resolve pc-relative fixups to global symbols due to interpositioning
concerns. We can handle these at link time by implementing the relocations.
The R_ARM_THM_PC8 has some extra encoding rules for addends that llvm-mc
sidesteps by not supporting addends for these instructions, using the wide
Thumb 2 instruction if it is available. I think that this is a reasonable
compromise given that these are rare.
This partiall reverts D72892, the Thumb fixups no longer need to be
evaluated at assembly time.
Differential Revision: https://reviews.llvm.org/D75039
Support the explicit wide assembler qualifier for the dmb/dsb/isb synchronization barrier instructions.
Differential revision: https://reviews.llvm.org/D75143
MC currently does not emit these relocation types, and lld does not
handle them. Add FKF_Constant as a work-around of some ARM code after
D72197. Eventually we probably should implement these relocation types.
By Fangrui Song!
Differential revision: https://reviews.llvm.org/D72892
Adjusting by 2 breaks DWARF output. With this fix, programs start to
compile and produce valid DWARF output.
Differential Revision: https://reviews.llvm.org/D74213
While the value of the CIE pointer field in a DWARF FDE record is
an offset to the corresponding CIE record from the beginning of
the section, for EH FDE records it is relative to the current offset.
Previously, we did not make that distinction when dumped both kinds
of FDE records and just printed the same value for the CIE pointer
field and the CIE offset; that was acceptable for DWARF FDEs but was
wrong for EH FDEs.
This patch fixes the issue by explicitly printing the offset of the
linked CIE object.
Differential Revision: https://reviews.llvm.org/D74613
Simply by implementing a few functions I was able to correctly
disassemble a much larger amount of instructions.
Differential Revision: https://reviews.llvm.org/D74045
Heads-up message: https://lists.llvm.org/pipermail/llvm-dev/2020-February/139390.html
GNU as started to emit warnings for changed sh_type or sh_flags in 2000.
GNU as>=2.35 will emit errors for most sh_type/sh_flags change, and error for entsize change.
Some cases remain warnings for legacy reasons:
.section .init_array,"ax", @progbits
.section .init_array,"ax", @init_array
# And some obscure sh_flags changes (OS/Processor specific flags)
The rationale of a diagnostic (warning or error) is that sh_type,
sh_flags or sh_entsize changes usually indicate user errors. The values
are taken from the first .section directive. Successive directives are ignored.
We just try to be rigid and emit errors for all sh_type/sh_flags/sh_entsize change.
A possible improvement in the future is to reuse
llvm-readobj/ELFDumper.cpp:getSectionTypeString so that we can name the
type in the diagnostics.
Reviewed By: psmith
Differential Revision: https://reviews.llvm.org/D73999
The changes the in-memory representation of wasm symbols such that their
optional ImportName and ImportModule use llvm::Optional.
ImportName is set whenever WASM_SYMBOL_EXPLICIT_NAME flag is set.
ImportModule (for imports) is currently always set since it defaults to
"env".
In the future we can possibly extent to binary format distingish
import which have explit module names.
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74109
Summary:
Extends the multivalue call infrastructure to tail calls, removes all
legacy calls specialized for particular result types, and removes the
CallIndirectFixup pass, since all indirect call arguments are now
fixed up directly in the post-insertion hook.
In order to keep supporting pretty-printed defs and uses in test
expectations, MCInstLower now inserts an immediate containing the
number of defs for each call and call_indirect. The InstPrinter is
updated to query this immediate if it is present and determine which
MCOperands are defs and uses accordingly.
Depends on D72902.
Reviewers: aheejin
Subscribers: dschuff, mgorny, sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74192
Summary:
This patch adds assembly-level support for a new Arm M-profile
architecture extension, Custom Datapath Extension (CDE).
A brief description of the extension is available at
https://developer.arm.com/architectures/instruction-sets/custom-instructions
The latest specification for CDE is currently a beta release and is
available at
https://static.docs.arm.com/ddi0607/aa/DDI0607A_a_armv8m_arm_supplement_cde.pdf
CDE allows chip vendors to add custom CPU instructions. The CDE
instructions re-use the same encoding space as existing coprocessor
instructions (such as MRC, MCR, CDP etc.). Each coprocessor in range
cp0-cp7 can be configured as either general purpose (GCP) or custom
datapath (CDEv1). This configuration is defined by the CPU vendor and
is provided to LLVM using 8 subtarget features: cdecp0 ... cdecp7.
The semantics of CDE instructions are implementation-defined, but the
instructions are guaranteed to be pure (that is, they are stateless,
they do not access memory or any registers except their explicit
inputs/outputs).
CDE requires the CPU to support at least Armv8.0-M mainline
architecture. CDE includes 3 sets of instructions:
* Instructions that operate on general purpose registers and NZCV
flags
* Instructions that operate on the S or D register file (require
either FP or MVE extension)
* Instructions that operate on the Q register file, require MVE
The user-facing names that can be specified on the command line are
the same as the 8 subtarget feature names. For example:
$ clang -target arm-none-none-eabi -march=armv8m.main+cdecp0+cdecp3
tells the compiler that the coprocessors 0 and 3 are configured as
CDEv1 and the remaining coprocessors are configured as GCP (which is
the default).
Reviewers: simon_tatham, ostannard, dmgreen, eli.friedman
Reviewed By: simon_tatham
Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D74044
https://bugs.llvm.org/show_bug.cgi?id=44775
This rule has been implemented by GNU as https://sourceware.org/ml/binutils/2020-02/msg00028.html (binutils >= 2.35)
It allows us to simplify
```
.section .foo,"o",foo,unique,0
.section .foo,"o",bar,unique,1 # different section
```
to
```
.section .foo,"o",foo
.section .foo,"o",bar # different section
```
We consider the two `.foo` different even if the linked-to symbols foo and bar
are defined in the same section. This is a deliberate choice so that we don't
need to know the section where foo and bar are defined beforehand.
Differential Revision: https://reviews.llvm.org/D74006
Assembler now permits pairs like 'v0:1', which are encoded
differently from the odd-first pairs like 'v1:0'.
The compiler will require more work to leverage these new register
pairs.
This reverts commit 80a34ae311 with fixes.
Previously, since bots turning on EXPENSIVE_CHECKS are essentially turning on
MachineVerifierPass by default on X86 and the fact that
inline-asm-avx-v-constraint-32bit.ll and inline-asm-avx512vl-v-constraint-32bit.ll
are not expected to generate functioning machine code, this would go
down to `report_fatal_error` in MachineVerifierPass. Here passing
`-verify-machineinstrs=0` to make the intent explicit.
This reverts commit 80a34ae311 with fixes.
On bots llvm-clang-x86_64-expensive-checks-ubuntu and
llvm-clang-x86_64-expensive-checks-debian only,
llc returns 0 for these two tests unexpectedly. I tweaked the RUN line a little
bit in the hope that LIT is the culprit since this change is not in the
codepath these tests are testing.
llvm\test\CodeGen\X86\inline-asm-avx-v-constraint-32bit.ll
llvm\test\CodeGen\X86\inline-asm-avx512vl-v-constraint-32bit.ll
We do not keep the actual value of the CIE ID field, because it is
predefined, and use a constant when dumping a CIE record. The issue
was that the predefined value is different for .debug_frame and
.eh_frame sections, but we always printed the one which corresponds
to .debug_frame. The patch fixes that by choosing an appropriate
constant to print.
See the following for more information about .eh_frame sections:
https://refspecs.linuxfoundation.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/ehframechpt.html
Differential Revision: https://reviews.llvm.org/D73627
This reverts commit rGcd5b308b828e, rGcd5b308b828e, rG8cedf0e2994c.
There are issues to be investigated for polly bots and bots turning on
EXPENSIVE_CHECKS.
https://reviews.llvm.org/D74273
Pad macho section data to pointer size bytes, so that relocation
table and symbol table following section data will be pointer size
aligned.
Patch by pguo.
This patch makes the following System Registers Read Only:
- CurrentEL
- ICH_MISR_EL2
- PMBIDR_EL1
- PMSIDR_EL1
as found in:
https://developer.arm.com/docs/ddi0595/e/aarch64-system-registers
Relative line numbers were also added to the tests so we get more
informative error messages on failure.
Change-Id: I963b4f01ca5737b58f9e8e7abe9ca1d99e328758
Summary:
This is a rework of D72611, using @LINE to check that errors are
reported against the right instruction instead of adding lots of extra
*-ERR-NEXT: check lines.
Reviewers: rampitec, arsenm, nhaehnle
Subscribers: kzhuravl, jvesely, wdng, yaxunl, dstuttard, tpr, t-tye, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74227
The registers TRCEXTINSELR and TRCEXTINSELR0 are distinct registers,
defined by separate extension specifications (ETM and ETE,
respectively), yet they use the same encoding in MSR/MRS.
When performing a system register lookup by encoding, we would
essentially return a random one, depending on the number, relative
position in the TableGen file, whether the TableGen records for system
registers are named or not, and, if they are named, depending on
record (not register!) name as well.
This patch works around the issue by explictly checking for the
TRCEXTINSELR/TRCEXTINSELR0 encoding and always returning TRCEXTINSELR.
Differential Revision: https://reviews.llvm.org/D74074
"linked-to section" is used by the ELF spec. By analogy, "linked-to
symbol" is a good name for the signature symbol. The word "linked-to"
implies a directed edge and makes it clear its relation with "sh_link",
while one can argue that "associated" means an undirected edge.
Also, combine tests and add precise SMLoc to improve diagnostics.
Reviewed By: eugenis, grimar, jhenderson
Differential Revision: https://reviews.llvm.org/D74082
The disassembler of the AVR backend is incomplete: most instructions do
not correctly disassemble yet.
This patch is the first in a series to add disassembly support to the
AVR backend. It starts with adding disassembler tests for instructions
that already disassemble correctly.
Differential Revision: https://reviews.llvm.org/D73911
Summary:
Implements the jump pseudo-instruction, which is used in e.g. the Linux kernel.
Reviewers: asb, lenary
Reviewed By: lenary
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73178
A known limitation for Future CPU is that the new prefixed instructions may
not cross 64 Byte boundaries.
All instructions are already 4 byte aligned so the only situation where this
can occur is when the prefix is in one 64 byte block and the instruction that
is prefixed is at the top of the next 64 byte block. To fix this case
PPCELFStreamer was added to intercept EmitInstruction. When a prefixed
instruction is emitted we try to align it to 64 Bytes by adding a maximum of
4 bytes. If the prefixed instruction crosses the 64 Byte boundary then the
alignment would trigger and a 4 byte nop would be added to push the
instruction into the next 64 byte block.
Differential Revision: https://reviews.llvm.org/D72570
A previous patch should have added pld and pstd and any support code in
the backend that is required for prefixed load and store type operations.
This patch adds a number of additional prefixed load and store type
instructions for the future CPU.
Differential Revision: https://reviews.llvm.org/D72577
This adds some missing MVE opcodes to evaluateBranch, which results in
llvm-objdump being able to print the PC relative branch target as an
annotation.
Differential Revision: https://reviews.llvm.org/D73553
Add the prefixed instructions pld and pstd to future CPU. These are load and
store instructions that require new operand types that are 34 bits. This patch
adds the two instructions as well as the operand types required.
Note that this patch also makes a minor change to tablegen to account for the
fact that some instructions are going to require shifts greater than 31 bits
for the new 34 bit instructions.
Differential Revision: https://reviews.llvm.org/D72574
Future CPU will include support for prefixed instructions.
These prefixed instructions are formed by a 4 byte prefix
immediately followed by a 4 byte instruction effectively
making an 8 byte instruction. The new instruction paddi
is a prefixed form of addi.
This patch adds paddi and all of the support required
for that instruction. The majority of the patch deals with
supporting the new prefixed instructions. The addition of
paddi is mainly to allow for testing.
Differential Revision: https://reviews.llvm.org/D72569
Summary:
This patch applies D60551 to an additional file. In particular, the test
is currently marked XFAIL for a number of big-endian targets; however,
the failure is actually dependent on the host endianness instead. The
test actually specifies a specific target triple.
Reviewers: rampitec, xingxue, daltenty
Reviewed By: rampitec
Subscribers: kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, fedor.sergeev, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73192
Summary:
Previously, we would erroneously turn %pcrel_lo(label), where label has
a %pcrel_hi against a weak symbol, into %pcrel_lo(label + offset), as
evaluatePCRelLo would believe the target independent logic was going to
fold it. Moreover, even if that were fixed, shouldForceRelocation lacks
an MCAsmLayout and thus cannot evaluate the %pcrel_hi fixup to a value
and check the symbol, so we would then erroneously constant-fold the
%pcrel_lo whilst leaving the %pcrel_hi intact. After D72197, this same
sequence also occurs for symbols with global binding, which is triggered
in real-world code.
Instead, as discussed in D71978, we introduce a new FKF_IsTarget flag to
avoid these kinds of issues. All the resolution logic happens in one
place, with no coordination required between RISCAsmBackend and
RISCVMCExpr to ensure they implement the same logic twice. Although the
implementation of %pcrel_hi can be left as target independent, we make
it target dependent to ensure that they are handled identically to
%pcrel_lo, otherwise we risk one of them being constant folded but the
other being preserved. This also allows us to properly support fixup
pairs where the instructions are in different fragments.
Reviewers: asb, lenary, efriedma
Reviewed By: efriedma
Subscribers: arichardson, hiraditya, rbar, johnrusso, simoncook, sabuasal, niosHD, kito-cheng, shiva0217, MaskRay, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, rkruppe, PkmX, jocewei, psnobl, benna, Jim, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73211
The idea is to produce R_X86_64_PLT32 instead of
R_X86_64_PC32 for branches.
It fixes https://bugs.llvm.org/show_bug.cgi?id=44397.
This patch teaches MC to do that for JCC (jump if condition is met)
instructions. The new behavior matches modern GNU as.
It is similar to D43383, which did the same for "call/jmp foo",
but missed JCC cases.
Differential revision: https://reviews.llvm.org/D72831