derived classes.
Since global data alignment, layout, and mangling is often based on the
DataLayout, move it to the TargetMachine. This ensures that global
data is going to be layed out and mangled consistently if the subtarget
changes on a per function basis. Prior to this all targets(*) have
had subtarget dependent code moved out and onto the TargetMachine.
*One target hasn't been migrated as part of this change: R600. The
R600 port has, as a subtarget feature, the size of pointers and
this affects global data layout. I've currently hacked in a FIXME
to enable progress, but the port needs to be updated to either pass
the 64-bitness to the TargetMachine, or fix the DataLayout to
avoid subtarget dependent features.
llvm-svn: 227113
utils/sort_includes.py.
I clearly haven't done this in a while, so more changed than usual. This
even uncovered a missing include from the InstrProf library that I've
added. No functionality changed here, just mechanical cleanup of the
include order.
llvm-svn: 225974
Currently this only functions to match simple cases
where ds_read2_* / ds_write2_* instructions can be used.
In the future it might match some of the other weird
load patterns, such as direct to LDS loads.
Currently enabled only with a subtarget feature to enable
easier testing.
llvm-svn: 219533
Add header guards to files that were missing guards. Remove #endif comments
as they don't seem common in LLVM (we can easily add them back if we decide
they're useful)
Changes made by clang-tidy with minor tweaks.
llvm-svn: 215558
v2: use ffbh/l if available
v3: Rebase on top of Matt's SI patches
Signed-off-by: Jan Vesely <jan.vesely@rutgers.edu>
Reviewed-by: Tom Stellard <tom@stellard.net>
llvm-svn: 213072
Moving these patterns from TableGen files to PerformDAGCombine()
should allow us to generate better code by eliminating unnecessary
shifts and extensions earlier.
This also fixes a bug where the MAD pattern was calling
SimplifyDemandedBits with a 24-bit mask on the first operand
even when the full pattern wasn't being matched. This occasionally
resulted in some instructions being incorrectly deleted from the
program.
v2:
- Fix bug with 64-bit mul
llvm-svn: 205731
The unit test is now disabled on non-asserts builds.
The CF stack can be corrupted if you use CF_ALU_PUSH_BEFORE,
CF_ALU_ELSE_AFTER, CF_ALU_BREAK, or CF_ALU_CONTINUE when the number of
sub-entries on the stack is greater than or equal to the stack entry
size and sub-entries modulo 4 is either 0 or 3 (on cedar the bug is
present when number of sub-entries module 8 is either 7 or 0)
We choose to be conservative and always apply the work-around when the
number of sub-enries is greater than or equal to the stack entry size,
so that we can safely over-allocate the stack when we are unsure of the
stack allocation rules.
reviewed-by: Vincent Lejeune <vljn at ovi.com>
llvm-svn: 199905
This reverts commit 35b8331cad6eb512a2506adbc394201181da94ba.
The -debug-only flag for llc doesn't appear to be available in
all build configurations.
llvm-svn: 199845
The CF stack can be corrupted if you use CF_ALU_PUSH_BEFORE,
CF_ALU_ELSE_AFTER, CF_ALU_BREAK, or CF_ALU_CONTINUE when the number of
sub-entries on the stack is greater than or equal to the stack entry
size and sub-entries modulo 4 is either 0 or 3 (on cedar the bug is
present when number of sub-entries module 8 is either 7 or 0)
We choose to be conservative and always apply the work-around when the
number of sub-enries is greater than or equal to the stack entry size,
so that we can safely over-allocate the stack when we are unsure of the
stack allocation rules.
reviewed-by: Vincent Lejeune <vljn at ovi.com>
llvm-svn: 199842
StructurizeCFG pass allows to make complex cfg reducible ; it allows a lot of
shader from shadertoy (which exhibits complex control flow constructs) to works
correctly with respect to CFG handling (and allow us to detect potential bug in
other part of the backend).
We provide a cmd line argument to disable the pass for debug purpose.
Patch by: Vincent Lejeune
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
llvm-svn: 192363
The global registry is used to allow command line override of the
scheduler selection, but does not work well as the normal selection
API. For example, the same LLVM process should be able to target
multiple targets or subtargets.
llvm-svn: 191071