This change does a few things:
- Move some InstCombine transforms to InstSimplify
- Run SimplifyCall from within InstCombine::visitCallInst
- Teach InstSimplify to fold [us]mul_with_overflow(X, undef) to 0.
llvm-svn: 237995
Make sure if we're truncating a constant that would then be sign extended
that the sign extension of the truncated constant is the same as the
original constant.
> Canonicalize min/max expressions correctly.
>
> This patch introduces a canonical form for min/max idioms where one operand
> is extended or truncated. This often happens when the other operand is a
> constant. For example:
>
> %1 = icmp slt i32 %a, i32 0
> %2 = sext i32 %a to i64
> %3 = select i1 %1, i64 %2, i64 0
>
> Would now be canonicalized into:
>
> %1 = icmp slt i32 %a, i32 0
> %2 = select i1 %1, i32 %a, i32 0
> %3 = sext i32 %2 to i64
>
> This builds upon a patch posted by David Majenemer
> (https://www.marc.info/?l=llvm-commits&m=143008038714141&w=2). That pass
> passively stopped instcombine from ruining canonical patterns. This
> patch additionally actively makes instcombine canonicalize too.
>
> Canonicalization of expressions involving a change in type from int->fp
> or fp->int are not yet implemented.
llvm-svn: 237821
SimplifyDemandedBits was "simplifying" a constant by removing just sign bits.
This caused a canonicalization race between different parts of instcombine.
Fix and regression test added - third time lucky?
llvm-svn: 237539
The AArch64 LNT bot is unhappy - I've found that the problem is in
SimpliftDemandedBits, but that's going to require another code review
so reverting in the meantime.
llvm-svn: 237528
The test timeouts were due to instcombine fighting itself. Regression test added.
Original log message:
Canonicalize min/max expressions correctly.
This patch introduces a canonical form for min/max idioms where one operand
is extended or truncated. This often happens when the other operand is a
constant. For example:
%1 = icmp slt i32 %a, i32 0
%2 = sext i32 %a to i64
%3 = select i1 %1, i64 %2, i64 0
Would now be canonicalized into:
%1 = icmp slt i32 %a, i32 0
%2 = select i1 %1, i32 %a, i32 0
%3 = sext i32 %2 to i64
This builds upon a patch posted by David Majenemer
(https://www.marc.info/?l=llvm-commits&m=143008038714141&w=2). That pass
passively stopped instcombine from ruining canonical patterns. This
patch additionally actively makes instcombine canonicalize too.
Canonicalization of expressions involving a change in type from int->fp
or fp->int are not yet implemented.
llvm-svn: 237520
This reverts r237453 - it was causing timeouts on some bots. Reverting
while I investigate (it's probably InstCombine fighting itself...)
llvm-svn: 237458
This patch introduces a canonical form for min/max idioms where one operand
is extended or truncated. This often happens when the other operand is a
constant. For example:
%1 = icmp slt i32 %a, i32 0
%2 = sext i32 %a to i64
%3 = select i1 %1, i64 %2, i64 0
Would now be canonicalized into:
%1 = icmp slt i32 %a, i32 0
%2 = select i1 %1, i32 %a, i32 0
%3 = sext i32 %2 to i64
This builds upon a patch posted by David Majenemer
(https://www.marc.info/?l=llvm-commits&m=143008038714141&w=2). That pass
passively stopped instcombine from ruining canonical patterns. This
patch additionally actively makes instcombine canonicalize too.
Canonicalization of expressions involving a change in type from int->fp
or fp->int are not yet implemented.
llvm-svn: 237453
Summary:
Extract method haveNoCommonBitsSet so that we don't have to duplicate this logic in
InstCombine and SeparateConstOffsetFromGEP.
This patch also makes SeparateConstOffsetFromGEP more precise by passing
DominatorTree to computeKnownBits.
Test Plan: value-tracking-domtree.ll that tests ValueTracking indeed leverages dominating conditions
Reviewers: broune, meheff, majnemer
Reviewed By: majnemer
Subscribers: jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D9734
llvm-svn: 237407
We already had a method to iterate over all the incoming values of a PHI. This just changes all eligible code to use it.
Ineligible code included anything which cared about the index, or was also trying to get the i'th incoming BB.
llvm-svn: 237169
Summary:
In RewriteStatepointsForGC pass, we create a gc_relocate intrinsic for
each relocated pointer, and the gc_relocate has the same type with the
pointer. During the creation of gc_relocate intrinsic, llvm requires to
mangle its type. However, llvm does not support mangling of all possible
types. RewriteStatepointsForGC will hit an assertion failure when it
tries to create a gc_relocate for pointer to vector of pointers because
mangling for vector of pointers is not supported.
This patch changes the way RewriteStatepointsForGC pass creates
gc_relocate. For each relocated pointer, we erase the type of pointers
and create an unified gc_relocate of type i8 addrspace(1)*. Then a
bitcast is inserted to convert the gc_relocate to the correct type. In
this way, gc_relocate does not need to deal with different types of
pointers and the unsupported type mangling is no longer a problem. This
change would also ease further merge when LLVM erases types of pointers
and introduces an unified pointer type.
Some minor changes are also introduced to gc_relocate related part in
InstCombineCalls, CodeGenPrepare, and Verifier accordingly.
Patch by Chen Li!
Reviewers: reames, AndyAyers, sanjoy
Reviewed By: sanjoy
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9592
llvm-svn: 237009
The QPX single-precision load/store intrinsics have implied
truncation/extension from/to the declared value type of <4 x double> to the
memory type of <4 x float>. When we can prove the alignment of the pointer
argument, and thus replace the intrinsic with a regular load or store, we need
to load or store the correct data type (<4 x float>) instead of (<4 x double>).
llvm-svn: 236973
Summary:
One step further getting aggregate loads and store being optimized
properly. This will only handle struct with one element at this point.
Test Plan: Added unit tests for the new supported cases.
Reviewers: chandlerc, joker-eph, joker.eph, majnemer
Reviewed By: majnemer
Subscribers: pete, llvm-commits
Differential Revision: http://reviews.llvm.org/D8339
Patch by Amaury Sechet.
From: Amaury Sechet <amaury@fb.com>
llvm-svn: 236695
This makes use of the new API which can remove attributes from a set given a builder.
This is much faster than creating a temporary set and reduces llc time by about 0.3% which was all spent creating temporary attributes sets on the context.
llvm-svn: 236668
When optimizing demanded bits of the operands of an Add we have to
remove the nsw/nuw flags as we have no guarantee anymore that we don't
wrap. This is legal here because the top bit is not demanded. In fact
this operaion was already performed but missed in the case of an Add
with a constant on the right side. To fix this this patch refactors the
code to unify the code paths in SimplifyDemandedUseBits() handling of
Add/Sub:
- The transformation of Add->Or is removed from the simplify demand
code because the equivalent transformation exists in
InstCombiner::visitAdd()
- KnownOnes/KnownZero are not adjusted for Add x, C anymore as
computeKnownBits() already performs these computations.
- The simplification of the operands is unified. In this new version
constant on the right side of a Sub are shrunk now as I could not find
a reason why not to do so.
- The special case for clearing nsw/nuw in ShrinkDemandedConstant() is
not necessary anymore as the caller does that already.
Differential Revision: http://reviews.llvm.org/D9415
llvm-svn: 236269
The rule that turns a sub to xor if the LHS is 2^n-1 and the remaining bits
are known zero, does not use the demanded bits at all: Move it to the
normal InstCombine code path.
Differential Revision: http://reviews.llvm.org/D9417
llvm-svn: 236268
Summary:
Optimizing these well are especially interesting for IRCE since it
"clamps" values by generating this sort of pattern through SCEV
expressions.
Depends on D9352.
Reviewers: majnemer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9353
llvm-svn: 236203
Summary:
After this change `MatchSelectPattern` recognizes the following form
of SMIN:
Y >s C ? ~Y : ~C == ~Y <s ~C ? ~Y : ~C = SMIN(~Y, ~C)
Reviewers: majnemer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9352
llvm-svn: 236202
This is a follow-on to D8833 (insertps optimization when the zero mask is not used).
In this patch, we check for the case where the zmask is used, but both input vectors
to the insertps intrinsic are the same operand or the zmask overrides the destination
lane. This lets us replace the 2nd shuffle input operand with the zero vector.
Differential Revision: http://reviews.llvm.org/D9257
llvm-svn: 235810
Move isDereferenceablePointer function to Analysis. This function recursively tracks dereferencability over a chain of values like other functions in ValueTracking.
This refactoring is motivated by further changes to support dereferenceable_or_null attribute (http://reviews.llvm.org/D8650). isDereferenceablePointer will be extended to perform context-sensitive analysis and IR is not a good place to have such functionality.
Patch by: Artur Pilipenko <apilipenko@azulsystems.com>
Differential Revision: reviews.llvm.org/D9075
llvm-svn: 235611
Only clear out the NSW/NUW flags if we are optimizing 'add'/'sub' while
taking advantage that the sign bit is not set. We do this optimization
to further shrink the mask but shrinking the mask isn't NSW/NUW
preserving in this case.
llvm-svn: 235558
An nsw/nuw operation relies on the values feeding into it to not
overflow if 'poison' is not to be produced. This means that
optimizations which make modifications to the bottom of a chain (like
SimplifyDemandedBits) must strip out nsw/nuw if they cannot ensure that
they will be preserved.
This fixes PR23309.
llvm-svn: 235544
https://llvm.org/bugs/show_bug.cgi?id=23163.
Gep merging sometimes behaves like a reverse CSE/LICM optimization,
which has negative impact on performance. In this patch we restrict
gep merging to happen only when the indexes to be merged are both consts,
which ensures such merge is always beneficial.
The patch makes gep merging only happen in very restrictive cases.
It is possible that some analysis/optimization passes rely on the merged
geps to get better result, and we havn't notice them yet. We will be ready
to further improve it once we see the cases.
Differential Revision: http://reviews.llvm.org/D8911
llvm-svn: 235455
https://llvm.org/bugs/show_bug.cgi?id=23163.
Gep merging sometimes behaves like a reverse CSE/LICM optimizations,
which has negative impact on performance. In this patch we restrict
gep merging to happen only when the indexes to be merged are both consts,
which ensures such merge is always beneficial.
The patch makes gep merging only happen in very restrictive cases.
It is possible that some analysis/optimization passes rely on the merged
geps to get better result, and we havn't notice them yet. We will be ready
to further improve it once we see the cases.
Differential Revision: http://reviews.llvm.org/D9007
llvm-svn: 235451
This is very similar to D8486 / r232852 (vperm2). If we treat insertps intrinsics
as shufflevectors, we can optimize them better.
I've left all but the full zero case of the zero mask variants out of this patch.
I don't think those can be converted into a single shuffle in all cases, but I'd
be happy to be proven wrong as I was for vperm2f128.
Either way, we'd need to support whatever sequence we come up with for those cases
in the backend before converting them here.
Differential Revision: http://reviews.llvm.org/D8833
llvm-svn: 235124
Summary:
This change moves creating calls to `llvm.uadd.with.overflow` from
InstCombine to CodeGenPrep. Combining overflow check patterns into
calls to the said intrinsic in InstCombine inhibits optimization because
it introduces an intrinsic call that not all other transforms and
analyses understand.
Depends on D8888.
Reviewers: majnemer, atrick
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8889
llvm-svn: 234638
CallSite roughly behaves as a common base CallInst and InvokeInst. Bring
the behavior closer to that model by making upcasts explicit. Downcasts
remain implicit and work as before.
Following dyn_cast as a mental model checking whether a Value *V isa
CallSite now looks like this:
if (auto CS = CallSite(V)) // think dyn_cast
instead of:
if (CallSite CS = V)
This is an extra token but I think it is slightly clearer. Making the
ctor explicit has the advantage of not accidentally creating nullptr
CallSites, e.g. when you pass a Value * to a function taking a CallSite
argument.
llvm-svn: 234601
Summary:
This patch adds an enum `OverflowCheckFlavor` and a function
`OptimizeOverflowCheck`. This will allow InstCombine to optimize
overflow checks without directly introducing an intermediate call to the
`llvm.$op.with.overflow` instrinsics.
This specific change is a refactoring and does not intend to change
behavior.
Reviewers: majnemer, atrick
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8888
llvm-svn: 234388
InstCombine didn't realize that it needs to use DataLayout to determine
how wide pointers are. This lead to assertion failures.
This fixes PR23113.
llvm-svn: 234046
This pushes the use of PointerType::getElementType up into several
callers - I'll essentially just have to keep pushing that up the stack
until I can eliminate every call to it...
llvm-svn: 233604
This just didn't need to be here at all, but the assertion I tried to
add wasn't appropriate either - the circumstance isn't impossible, it's
just not important to deal with it here - the gep-rooted version of this
instcombine will handle this case, we don't need to duplicate it for the
case where the gep happens to be used in a bitcast.
llvm-svn: 233404
The changes to InstCombine (& SCEV) do seem a bit silly - it doesn't make
anything obviously better to have the caller access the pointers element
type (the thing I'm trying to remove) than the GEP itself, but it's a
helpful migration step. This will allow me to more obviously lock down
GEP (& Load, etc) API usage, then fix all the code that accesses pointer
element types except the places that need to be removed (most of the
InstCombines) anyway - at which point I'll need to just remove all that
code because it won't be meaningful anymore (there will be no pointer
types, so no bitcasts to combine)
SCEV looks like it'll need some restructuring - we'll have to do a bit
more work for GEP canonicalization, since it'll depend on how it's used
if we can even manage to canonicalize it to a non-ugly GEP. I guess we
can do some fun stuff like voting (do 2 out of 3 load from the GEP with
a certain type that gives a pretty GEP? Does every typed use of the GEP
use either a specific type or a generic type (i8*, etc)?)
llvm-svn: 233131
The changes to InstCombine do seem a bit silly - it doesn't make
anything obviously better to have the caller access the pointers element
type (the thing I'm trying to remove) than the GEP itself, but it's a
helpful migration step. This will allow me to more obviously lock down
GEP (& Load, etc) API usage, then fix all the code that accesses pointer
element types except the places that need to be removed (most of the
InstCombines) anyway - at which point I'll need to just remove all that
code because it won't be meaningful anymore (there will be no pointer
types, so no bitcasts to combine)
llvm-svn: 233126