This is mostly an NFC, which increases code readability (instead of
saving old terminator, generating new one in front of old, and deleting
old, we just call a function). However, it would additionaly copy
the debug location from old instruction to replacement, which
would help PR23837.
llvm-svn: 241197
All file formats only needed 16-bits right now which is enough to fit
in to the padding with other fields.
This reduces the size of MCSymbol to 24-bytes on a 64-bit system. The
layout is now
0 | class llvm::MCSymbol
0 | class llvm::PointerIntPair SectionOrFragmentAndHasName
0 | intptr_t Value
| [sizeof=8, dsize=8, align=8
| nvsize=8, nvalign=8]
8 | unsigned int IsTemporary
8 | unsigned int IsRedefinable
8 | unsigned int IsUsed
8 | _Bool IsRegistered
8 | unsigned int IsExternal
8 | unsigned int IsPrivateExtern
8 | unsigned int Kind
9 | unsigned int IsUsedInReloc
9 | unsigned int SymbolContents
9 | unsigned int CommonAlignLog2
10 | uint32_t Flags
12 | uint32_t Index
16 | union
16 | uint64_t Offset
16 | uint64_t CommonSize
16 | const class llvm::MCExpr * Value
| [sizeof=8, dsize=8, align=8
| nvsize=8, nvalign=8]
| [sizeof=24, dsize=24, align=8
| nvsize=24, nvalign=8]
llvm-svn: 241196
This patch adds initial general-dynamic TLS support for AArch64. Currently
no optimization is done to realx for more performance-wise models (initial-exec
or local-exec). This patch also only currently handles correctly executable
generation, although priliminary DSO support through PLT specific creation
is also added.
With this change clang/llvm bootstrap with lld is possible in static configuration
(some DSO creation fails due missing Linker script support, not AArch64 specific),
although make check also shows some issues.
llvm-svn: 241192
Summary:
According to PTX ISA:
For convenience, ld, st, and cvt instructions permit source and destination data operands to be wider than the instruction-type size, so that narrow values may be loaded, stored, and converted using regular-width registers. For example, 8-bit or 16-bit values may be held directly in 32-bit or 64-bit registers when being loaded, stored, or converted to other types and sizes. The operand type checking rules are relaxed for bit-size and integer (signed and unsigned) instruction types; floating-point instruction types still require that the operand type-size matches exactly, unless the operand is of bit-size type.
So, the ISA does not support load with extending/store with truncatation for floating numbers. This is reflected in setting the loadext/truncstore actions to expand in the code for floating numbers, but vectors of floating numbers are not taken care of.
As a result, loading a vector of floats followed by a fp_extend may be combined by DAGCombiner to a extload, and the extload may be lowered to NVPTXISD::LoadV2 with extending information. However, NVPTXISD::LoadV2 does not perform extending, and no extending instructions are inserted. Finally, PTX instructions with mismatched types are generated, like
ld.v2.f32 {%fd3, %fd4}, [%rd2]
This patch adds the correct actions for vectors of floats, so DAGCombiner would not create loads with extending, and correct code is generated.
Patched by Gang Hu.
Test Plan: Test case attached.
Reviewers: jingyue
Reviewed By: jingyue
Subscribers: llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D10876
llvm-svn: 241191
Given that alignments are always powers of 2, just encode it this way.
This matches how we encode alignment on IR GlobalValue's for example.
This compresses the CommonAlign member down to 5 bits which allows it
to pack better with the surrounding fields.
Reviewed by Duncan Exon Smith.
llvm-svn: 241189
32-bit finally funclets are intended to be called both directly from the
parent function and indirectly from the EH runtime. Because we aren't
contorting LLVM's X86 prologue to match MSVC's, calling the finally
block directly passes in a different value of EBP than the one that the
runtime provides. We need an adapter thunk to adjust EBP to the expected
value. However, WinEHPrepare already has to solve this problem when
cleanups are not pre-outlined, so we can go ahead and rely on it rather
than duplicating work.
Now we only do the llvm.x86.seh.recoverfp dance for 32-bit SEH filter
functions.
llvm-svn: 241187
Don't pattern match for frontend outlined finally calls on non-x64
platforms. The 32-bit runtime uses a different funclet prototype. Now,
the frontend is pre-outlining the finally bodies so that it ends up
doing most of the heavy lifting for variable capturing. We're just
outlining the callsite, and adapting the frameaddress(0) call to line up
the frame pointer recovery.
llvm-svn: 241186
Summary:
Offset of frame index is calculated by NVPTXPrologEpilogPass. Before
that the correct offset of stack objects cannot be obtained, which
leads to wrong offset if there are more than 2 frame objects. This patch
move NVPTXPeephole after NVPTXPrologEpilogPass. Because the frame index
is already replaced by %VRFrame in NVPTXPrologEpilogPass, we check
VRFrame register instead, and try to remove the VRFrame if there
is no usage after NVPTXPeephole pass.
Patched by Xuetian Weng.
Test Plan:
Strengthened test/CodeGen/NVPTX/local-stack-frame.ll to check the
offset calculation based on SP and SPL.
Reviewers: jholewinski, jingyue
Reviewed By: jingyue
Subscribers: jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D10853
llvm-svn: 241185
This is because - in theory - the formatter could match on not just the type, but also other properties of a ValueObject, so a per-type caching would not be a good thing
On the other hand, that is not always true - sometimes the matching truly is per-type
So, introduce a non-cacheable attribute on formatters that decides whether a formatter should or should not be cached. That way, the few formatters that don't want themselves cached can do so, but most formatters (including most hard-coded ones) can cache themselves just fine
llvm-svn: 241184
When adding little-endian vector support for PowerPC last year, I
inadvertently disabled an optimization that recognizes a load-splat
idiom and generates the lxvdsx instruction. This patch moves the
offending logic so lxvdsx is once again generated.
This pattern is frequently generated by the vectorizer for scalar
loads of an effective constant. Previously the lxvdsx instruction was
wrongly listed as lane-sensitive for the VSX swap optimization (since
both doublewords are identical, swaps are safe). This patch fixes
this as well, so that vectorized code using lxvdsx can now have swaps
removed from the computation.
There is an existing test (@test50) in test/CodeGen/PowerPC/vsx.ll
that checks for the missing optimization. However, vsx.ll was only
being tested for POWER7 with big-endian code generation. I've added
a little-endian RUN statement and expected LE code generation for all
the tests in vsx.ll to give us a bit better VSX coverage, including
what's needed for this patch.
llvm-svn: 241183
This patch is not intended to change existing codegen behavior for any target.
It just exposes the JumpIsExpensive setting on the command-line to allow for
easier testing and emergency overrides.
Also, change the existing regression test to use FileCheck, explicitly specify
the jump-is-expensive option, and use more precise checks.
Differential Revision: http://reviews.llvm.org/D10846
llvm-svn: 241179
This re-lands r236052 and adds support for __exception_code().
In 32-bit SEH, the exception code is not available in eax. It is only
available in the filter function, and now we arrange to load it and
store it into an escaped variable in the parent frame.
As a consequence, we have to disable the "catch i8* null" optimization
on 32-bit and always generate a filter function. We can re-enable the
optimization if we detect an __except block that doesn't use the
exception code, but this probably isn't worth optimizing.
Reviewers: majnemer
Differential Revision: http://reviews.llvm.org/D10852
llvm-svn: 241171
The EH code might have been deleted as unreachable and the personality
pruned while the filter is still present. Currently I'm hitting this at
-O0 due to the clang bug PR24009.
llvm-svn: 241170
The OMPT status is never equal to ompt_status_track. ompt_status_track = 0x2
and ompt_status_track_callback = 0x6 just share a bit, so that we can check
for traceing and callbacks with the same status.
Patch by Tim Cramer
Differential Revision: http://reviews.llvm.org/D10863
llvm-svn: 241167
This patch teaches the AsmParser to accept add/adds/sub/subs/cmp/cmn
with a negative immediate operand and convert them as shown:
add Rd, Rn, -imm -> sub Rd, Rn, imm
sub Rd, Rn, -imm -> add Rd, Rn, imm
adds Rd, Rn, -imm -> subs Rd, Rn, imm
subs Rd, Rn, -imm -> adds Rd, Rn, imm
cmp Rn, -imm -> cmn Rn, imm
cmn Rn, -imm -> cmp Rn, imm
Those instructions are an alternate syntax available to assembly coders,
and are needed in order to support code already compiling with some other
assemblers (gas). They are documented in the "ARMv8 Instruction Set
Overview", in the "Arithmetic (immediate)" section. This makes llvm-mc
a programmer-friendly assembler !
This also fixes PR20978: "Assembly handling of adding negative numbers
not as smart as gas".
llvm-svn: 241166
Move some instructions into order of sections in the spec, as the rest
already were.
Differential Revision: http://reviews.llvm.org/D9102
llvm-svn: 241163
This also improves the logic of what is an error:
* getSection(uint_32): only return an error if the index is out of bounds. The
index 0 corresponds to a perfectly valid entry.
* getSection(Elf_Sym): Returns null for symbols that normally don't have
sections and error for out of bound indexes.
In many places this just moves the report_fatal_error up the stack, but those
can then be fixed in smaller patches.
llvm-svn: 241156
Enhance clang-tidy readability-simplify-boolean-expr to handle 'if (e) return
true; return false;' and improve replacement expressions.
This changeset extends the simplify boolean expression check in clang-tidy to
simplify if (e) return true; return false; to return e; (note the lack of an
else clause on the if statement.) By default, chained conditional assignment is
left unchanged, unless a configuration parameter is set to non-zero to override
this behavior.
It also improves the handling of replacement expressions to apply
static_cast<bool>(expr) when expr is not of type bool.
http://reviews.llvm.org/D9810
Patch by Richard Thomson!
llvm-svn: 241155
Function static variables, typedefs and records (class, struct or union) declared inside
a lexical scope were associated with the function as their parent scope, rather than the
lexical scope they are defined or declared in.
This fixes PR19238
Patch by: amjad.aboud@intel.com
Differential Revision: http://reviews.llvm.org/D9760
llvm-svn: 241154
Function static variables, typedefs and records (class, struct or union) declared inside
a lexical scope were associated with the function as their parent scope, rather than the
lexical scope they are defined or declared in.
This fixes PR19238
Patch by: amjad.aboud@intel.com
Differential Revision: http://reviews.llvm.org/D9758
llvm-svn: 241153
Only consider an instruction a candidate for relaxation if the last operand of the
instruction is an expression. We previously checked whether any operand is an expression,
which is useless, since for all instructions concerned, the only operand that may be
affected by relaxation is the last one.
In addition, this removes the check for having RIP as an argument, since it was
plain wrong - even when one of the arguments is RIP, relaxation may still be needed.
This fixes PR9807.
Patch by: david.l.kreitzer@intel.com
Differential Revision: http://reviews.llvm.org/D10766
llvm-svn: 241152