Summary:
The code for GetSyntheticArrayMemberFromPointer and
GetSyntheticArrayMemberFromArray was identical, so just collapse the
the methods into one.
Reviewers: granata.enrico, clayborg
Reviewed By: clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D7911
llvm-svn: 230708
There was a test in the test suite that was triggering the backtrace logging output that requested that the client pass an execution context. Sometimes we need the process for Objective C types because our static notion of the type might not align with the reality when being run in a live runtime.
Switched from an "ExecutionContext *" to an "ExecutionContextScope *" for greater ease of use.
llvm-svn: 228892
A runtime support value is a ValueObject whose only purpose is to support some language runtime's operation, but it does not directly provide any user-visible benefit
As such, unless the user is working on the runtime support, it is mostly safe for them not to see such a value when debugging
It is a language runtime's job to check whether a ValueObject is a support value, and that - in conjunction with a target setting - is used by frame variable and target variable
SBFrame::GetVariables gets a new overload with yet another flag to dictate whether to return those support values to the caller - that which defaults to the setting's value
rdar://problem/15539930
llvm-svn: 228791
And since enough of these are doing the right thing, add a test case to verify we are doing the right thing with freeze drying ObjC object types
Fixes rdar://18092770
llvm-svn: 227282
This is necessary because the byte size of an ObjC class type is not reliably statically knowable (e.g. because superclasses sit deep in frameworks that we have no debug info for)
The lack of reliable size info is a problem when trying to freeze-dry an ObjC instance (not the pointer, the pointee)
This commit lays the foundation for having language runtimes help in figuring out byte sizes, and having ClangASTType ask for runtime help
No feature change as no runtime actually implements the logic, and nowhere is an ExecutionContext passed in yet
llvm-svn: 227274
Most of the time, we can use context information just fine to choose a language (i.e. the language of the frame that the root object was defined in, if any); but in some cases, synthetic children may be fabricated as root frame-less entities, and then we wouldn't know any better
This patch allows (internal) synthetic child providers to set a display language on the children they generate, should they so choose
llvm-svn: 226634
It also comes with a (rudimentary) test case that gets itself in a failed update scenario, and checks that we don't crash
This is the easiest case I could think of that forces the failed update case Zachary was seeing
llvm-svn: 225463
Function pointers had a summary generated for them bypassing formatters, directly as part of the ValueObject subsystem
This patch transitions that code into a hardcoded summary
llvm-svn: 223906
Because of the way they are created, synthetic children cannot (in general) have a sane expression path
A solution to this would be letting the parent front-end generate expression paths for its children
Doing so requires a significant amount of refactoring, and might not always lead to better results (esp. w.r.t. C++ templates)
This commit takes a simpler approach:
- if a synthetic child is of pointer type and it's a target pointer, then emit *((T)value)
- if a synthetic child is a non-pointer, but its location is in the target, then emit *((T*)loadAddr)
- if a synthetic child has a value, emit ((T)value)
- else, don't emit anything
Fixes rdar://18442386
llvm-svn: 223836
track of the checksum of the object so we can
track if it is modified. This fixes a testcase
(test/expression_command/issue_11588) on OS X.
Patch by Enrico Granata.
llvm-svn: 223830
- adds a new flag to mark ValueObjects as "synthetic children generated"
- vends new Create functions as part of the SyntheticChildrenFrontEnd that set the flag automatically
- moves synthetic child providers over to using these new functions
No visible feature change, but preparatory work for feature change
llvm-svn: 223819
Such a persisted version is equivalent to evaluating the value via the expression evaluator, and holding on to the $n result of the expression, except this API can be used on SBValues that do not obviously come from an expression (e.g. are the result of a memory lookup)
Expose this via SBValue::Persist() in our public API layer, and ValueObject::Persist() in the lldb_private layer
Includes testcase
Fixes rdar://19136664
llvm-svn: 223711
Two flags are introduced:
- preferred display language (as in, ObjC vs. C++)
- summary capping (as in, should a limit be put to the amount of data retrieved)
The meaning - if any - of these options is for individual formatters to establish
The topic of a subsequent commit will be to actually wire these through to individual data formatters
llvm-svn: 221482
The recent StringPrinter changes made this behavior the default, and the setting defaults to yes
If you want to change this behavior and see non-printables unescaped (e.g. "a\tb" as "a b"), set it to false
Fixes rdar://12969594
llvm-svn: 221399
The way to do this is to write a synthetic child provider for your type, and have it vend the (optional) get_value function.
If get_value is defined, and it returns a valid SBValue, that SBValue's value (as in lldb_private::Value) will be used as the synthetic ValueObject's Value
The rationale for doing things this way is twofold:
- there are many possible ways to define a "value" (SBData, a Python number, ...) but SBValue seems general enough as a thing that stores a "value", so we just trade values that way and that keeps our currency trivial
- we could introduce a new level of layering (ValueObjectSyntheticValue), a new kind of formatter (synthetic value producer), but that would complicate the model (can I have a dynamic with no synthetic children but synthetic value? synthetic value with synthetic children but no dynamic?), and I really couldn't see much benefit to be reaped from this added complexity in the matrix
On the other hand, just defining a synthetic child provider with a get_value but returning no actual children is easy enough that it's not a significant road-block to adoption of this feature
Comes with a test case
llvm-svn: 219330
Rationale:
Pretty simply, the idea is that sometimes type names are way too long and contain way too many details for the average developer to care about. For instance, a plain ol' vector of int might be shown as
std::__1::vector<int, std::__1::allocator<....
rather than the much simpler std::vector<int> form, which is what most developers would actually type in their code
Proposed solution:
Introduce a notion of "display name" and a corresponding API GetDisplayTypeName() to return such a crafted for visual representation type name
Obviously, the display name and the fully qualified (or "true") name are not necessarily the same - that's the whole point
LLDB could choose to pick the "display name" as its one true notion of a type name, and if somebody really needs the fully qualified version of it, let them deal with the problem
Or, LLDB could rename what it currently calls the "type name" to be the "display name", and add new APIs for the fully qualified name, making the display name the default choice
The choice that I am making here is that the type name will keep meaning the same, and people who want a type name suited for display will explicitly ask for one
It is the less risky/disruptive choice - and it should eventually make it fairly obvious when someone is asking for the wrong type
Caveats:
- for now, GetDisplayTypeName() == GetTypeName(), there is no logic to produce customized display type names yet.
- while the fully-qualified type name is still the main key to the kingdom of data formatters, if we start showing custom names to people, those should match formatters
llvm-svn: 209072
Set the correct FormatManager revision before starting to figure out the new formatters
This can avoid entering some corner cases where as part of figuring out formatters we try to figure out dynamic types, and in turn that causes us to go back in trying to fetch new formatters - it is not only a futile exercise, it's also prone to endless recursion
This would only cause a behavior change if getting this chain started would eventually cause something to run and alter the formatters, a very unlikely if at all possible sequence of events
llvm-svn: 205928
This is a purely mechanical change explicitly casting any parameters for printf
style conversion. This cleans up the warnings emitted by gcc 4.8 on Linux.
llvm-svn: 205607
For some reason, the libc++ vector<bool> data formatter was essentially a costly no-up, doing everything required of it, except actually generating the child values!
This restores its functionality
llvm-svn: 205259
read during materialization. First of all, report
if we can't read the data for some reason. Second,
consult the ValueObject's error and report that if
there's some problem.
<rdar://problem/16074201>
llvm-svn: 202552
Revert the spirit of r199857 - a convincing case can be made that overriding a summary's format markers behind its back is not the right thing to do
This commit reverts the behavior of the code to the previous model, and changes the test case to validate the opposite of what it was validating before
llvm-svn: 201455
The many many benefits include:
1 - Input/Output/Error streams are now handled as real streams not a push style input
2 - auto completion in python embedded interpreter
3 - multi-line input for "script" and "expression" commands now allow you to edit previous/next lines using up and down arrow keys and this makes multi-line input actually a viable thing to use
4 - it is now possible to use curses to drive LLDB (please try the "gui" command)
We will need to deal with and fix any buildbot failures and tests and arise now that input/output and error are correctly hooked up in all cases.
llvm-svn: 200263
The "type format add" command gets a new flag --type (-t). If you pass -t <sometype>, upon fetching the value for an object of your type,
LLDB will display it as-if it was of enumeration type <sometype>
This is useful in cases of non-contiguous enums where there are empty gaps of unspecified values, and as such one cannot type their variables as the enum type,
but users would still like to see them as-if they were of the enum type (e.g. DWARF field types with their user-reserved ranges)
The SB API has also been improved to handle both types of formats, and a test case is added
llvm-svn: 198105
TypeFormatImpl used to just wrap a Format (and Flags for matching), and then ValueObject itself would do the printing deed
With this checkin, the responsibility of generating a value string is centralized in the data formatter (as it should, and already is for summaries)
This change is good practice per se, and should also enable us to extend the type format mechanism in a cleaner way
llvm-svn: 197874
<rdar://problem/15314403>
This patch adds a new lldb_private::SectionLoadHistory class that tracks what shared libraries were loaded given a process stop ID. This allows us to keep a history of the sections that were loaded for a time T. Many items in history objects will rely upon the process stop ID in the future.
llvm-svn: 196557
pure virtual base class and made StackFrame a subclass of that. As
I started to build on top of that arrangement today, I found that it
wasn't working out like I intended. Instead I'll try sticking with
the single StackFrame class -- there's too much code duplication to
make a more complicated class hierarchy sensible I think.
llvm-svn: 193983
defines a protocol that all subclasses will implement. StackFrame
is currently the only subclass and the methods that Frame vends are
nearly identical to StackFrame's old methods.
Update all callers to use Frame*/Frame& instead of pointers to
StackFrames.
This is almost entirely a mechanical change that touches a lot of
the code base so I'm committing it alone. No new functionality is
added with this patch, no new subclasses of Frame exist yet.
I'll probably need to tweak some of the separation, possibly moving
some of StackFrame's methods up in to Frame, but this is a good
starting point.
<rdar://problem/15314068>
llvm-svn: 193907
Fixing a problem where ValueObject::GetPointeeData() would not accept "partial" valid reads (i.e. asking for 10 items and getting only 5 back)
While suboptimal, this situation is not a flat-out failure and could well be caused by legit scenarios, such as hitting a page boundary
Among others, this allows data formatters to print char* buffers allocated under libgmalloc
llvm-svn: 193704
One of the things that dynamic typing affects is the count of children a type has
Clear out the flag that makes us blindly believe the children count when a dynamic type change is detected
llvm-svn: 193663
This commit reimplements the TypeImpl class (the class that backs SBType) in terms of a static,dynamic type pair
This is useful for those cases when the dynamic type of an ObjC variable can only be obtained in terms of an "hollow" type with no ivars
In that case, we could either go with the static type (+iVar information) or with the dynamic type (+inheritance chain)
With the new TypeImpl implementation, we try to combine these two sources of information in order to extract as much information as possible
This should improve the functionality of tools that are using the SBType API to do extensive dynamic type inspection
llvm-svn: 193564
Constant ValueObjects should clear their description as well as their summary. Rationale being that both can depend on deeper-than-constified data
so both are subject to changes in "unpredictable" ways
To see this consider repeatedly po'ing a persistent variable of a type whose -description result changes at each invocation
llvm-svn: 192259
Formats (as in "type format") are now included in categories
The only bit missing is caching formats along with synthetic children and summaries, which might be now desirable
llvm-svn: 192217
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
Now that SBValues can be setup to ignore synthetic values, this is no longer necessary, and so m_suppress_synthetic_value can go away
Another Hack Bites the Dust
llvm-svn: 191338
SVN r189964 provided a sample Python script to inspect unordered(multi){set|map} with synthetic children, contribued by Jared Grubb
This checkin converts that sample script to a C++ provider built into LLDB
A test case is also provided
llvm-svn: 190564
A long time ago we start with clang types that were created by the symbol files and there were many functions in lldb_private::ClangASTContext that helped. Later we create ClangASTType which contains a clang::ASTContext and an opauque QualType, but we didn't switch over to fully using it. There were a lot of places where we would pass around a raw clang_type_t and also pass along a clang::ASTContext separately. This left room for error.
This checkin change all type code over to use ClangASTType everywhere and I cleaned up the interfaces quite a bit. Any code that was in ClangASTContext that was type related, was moved over into ClangASTType. All code that used these types was switched over to use all of the new goodness.
llvm-svn: 186130
Fixing an issue where formats would not propagate from parents to children in all cases
Details follow:
an SBValue has children and those are fetched along with their values
Now, one calls SBValue::SetFormat() on the parent
Technically, the format choices should propagate onto the children (see ValueObject::GetFormat())
But if the children values are already fetched, they won't notice the format change and won't update themselves
This commit fixes that by making ValueObject::GetValueAsCString() check if any format change intervened from the previous call to the current one
A test case is also added
llvm-svn: 183030
Enabling LLDB to write to variables that are stored in registers
Previously, this would not work since the Value's Context loses the notion of the data being in a register
We now store an "original" context that comes out of DWARF parsing, and use that context's data when attempting a write
llvm-svn: 180803
variables in the ValueObject code:
- Report an error if the variable does not have
a valid address.
- Return the contents of the data to GetData(),
even if the value is constant.
<rdar://problem/13690855>
llvm-svn: 179876
lets a ValueObject's contents be set from raw
data. This has certain limitations (notably,
registers can only be set to data that is as
large as the register) but will be useful for
the new Materializer.
I also exposed this interface through SBValue.
I have added a testcase that exercises various
special cases of SBValue::SetData().
llvm-svn: 179437
This patch fixes the issue that we were using the C stack as a measure of depth of ValueObject hierarchies, in the sense that we were assuming that recursive ValueObject operations would never be deeper than the stack allows.
This assumption is easy to prove wrong, however.
For instance, after ~10k runs through this loop:
struct node
{
int value;
node* child;
node (int x)
{
value = x;
child = nullptr;
}
};
int main ()
{
node root(1);
node* ptr = &root;
int j = 2;
while (1)
{
ptr->child = new node(j++);
ptr = ptr->child;
}
return 0;
}
the deepmost child object will be deeper than the stack on most architectures, and we would be unable to display it
This checkin fixes the issue by introducing a notion of root of ValueObject hierarchies.
In a couple cases, we have to use an iterative algorithm instead of going to the root because we want to allow deeper customizations (e.g. formats, dynamic values).
While the patch passes our test suite without regressions, it is a good idea to keep eyes open for any unexpected behavior (recursion can be subtle..)
Also, I am hesitant to introduce a test case since failing at this will not just be marked as an "F", but most definitely crash LLDB.
llvm-svn: 179330
LLDB is crashing when logging is enabled from lldb-perf-clang. This has to do with the global destructor chain as the process and its threads are being torn down.
All logging channels now make one and only one instance that is kept in a global pointer which is never freed. This guarantees that logging can correctly continue as the process tears itself down.
llvm-svn: 178191
Ensure that option -Y also works for expression as it does for frame variable
Also, if the user passes an explicit format specifier when printing a variable, override the summary's decision to hide the value.
This is required for scenarios like this to work:
(lldb) p/x c
(Class) $0 = 0x0000000100adb7f8 NSObject
Previously this would say:
(lldb) p/x c
(Class) $0 = NSObject
ignoring the explicit format specifier
llvm-svn: 177893
commands of the form
frame variable -f c-string foo
where foo is an arbitrary pointer (e.g. void*) now do the right thing, i.e. they deref the pointer and try to get a c-string at the pointed address instead of dumping the pointer bytes as a string. the old behavior is used as a fallback if things don’t go well
llvm-svn: 177799
Adding data formatters for iterators for std::map and std::vector (both libc++ and libstdcpp)
This does not include reverse iterators since they are both trickier (due to requirements the standard imposes on them) and much less useful
llvm-svn: 175787
1 - A store off the end of a buffer in ValueObject.cpp
2 - DataExtractor had cases where bad offsets could cause invalid memory to be accessed.
llvm-svn: 174757
Providing a compact display mode for "po" to use where the convenience variable name and the pointer value are both hidden.
This is for convenience when dealing with ObjC instances where the description often gets it right and the debugger-provided information is not useful to most people.
If you need either of these, "expr" will still show them.
llvm-svn: 173748
Data formatters now cache themselves.
This commit provides a new formatter cache mechanism. Upon resolving a formatter (summary or synthetic), LLDB remembers the resolution for later faster retrieval.
Also moved the data formatters subsystem from the core to its own group and folder for easier management, and done some code reorganization.
The ObjC runtime v1 now returns a class name if asked for the dynamic type of an object. This is required for formatters caching to work with the v1 runtime.
Lastly, this commit disposes of the old hack where ValueObjects had to remember whether they were queried for formatters with their static or dynamic type.
Now the ValueObjectDynamicValue class works well enough that we can use its dynamic value setting for the same purpose.
llvm-svn: 173728
Major fixed to allow reading files that are over 4GB. The main problems were that the DataExtractor was using 32 bit offsets as a data cursor, and since we mmap all of our object files we could run into cases where if we had a very large core file that was over 4GB, we were running into the 4GB boundary.
So I defined a new "lldb::offset_t" which should be used for all file offsets.
After making this change, I enabled warnings for data loss and for enexpected implicit conversions temporarily and found a ton of things that I fixed.
Any functions that take an index internally, should use "size_t" for any indexes and also should return "size_t" for any sizes of collections.
llvm-svn: 173463
Extending ValueObjectDynamicValue so that it stores a TypeAndOrName instead of a TypeSP.
This change allows us to reflect the notion that a ValueObject can have a dynamic type for which we have no debug information.
Previously, we would coalesce that to the static type of the object, potentially losing relevant information or even getting it wrong.
This fix ensures we can correctly report the class name for Cocoa objects whose types are hidden classes that we know nothing about (e.g. __NSArrayI for immutable arrays).
As a side effect, our --show-types argument to frame variable no longer needs to append custom dynamic type information.
llvm-svn: 173216
Providing a data formatter for libc++ std::wstring
In the process, refactoring the std::string data formatter to be written in C++ so that commonalities between the two can be exploited
Also, providing a new API on the ValueObject to navigate a hierarchy by index-path
Lastly, an appropriate test case is included
llvm-svn: 172282
Supporting a compact display syntax for ObjC pointers where 0x00.....0 is replaced by a much more legible "nil"
e.g. this would show:
(NSArray *) $2 = nil
instead of:
(NSArray *) $2 = 0x0000000000000000 <nil>
llvm-svn: 170161
- remove unused members
- add NO_PEDANTIC to selected Makefiles
- fix return values (removed NULL as needed)
- disable warning about four-char-constants
- remove unneeded const from operator*() declaration
- add missing lambda function return types
- fix printf() with no format string
- change sizeof to use a type name instead of variable name
- fix Linux ProcessMonitor.cpp to be 32/64 bit friendly
- disable warnings emitted by swig-generated C++ code
Patch by Matt Kopec!
llvm-svn: 169645
Fixed zero sized arrays to work correctly. This will only happen once we get a clang that emits correct debug info for zero sized arrays. For now I have marked the TestStructTypes.py as an expected failure.
llvm-svn: 169465
- add new header lldb-python.h to be included before other system headers
- short term fix (eventually python dependencies must be cleaned up)
Patch by Matt Kopec!
llvm-svn: 169341
The attached patch adds eValueTypeVector to lldb_private::Value. The nested struct Vector is patterned after RegisterValue::m_data.buffer. This change to Value allows ClangExpressionDeclMap::LookupDecl to return vector register data for consumption by InterpreterStackFrame::ResolveValue. Note that ResolveValue was tweaked slightly to allocate enough memory for vector registers.
An immediate result of this patch is that "expr $xmm0" generates the same results on Linux as on the Mac, which is good enough for TestRegisters.py. In addition, the log of m_memory.PrintData(data_region.m_base, data_region.m_extent) shows that the register content has been resolved successfully. On the other hand, the output is glaringly empty:
runCmd: expr $xmm0
output: (unsigned char __attribute__((ext_vector_type(16)))) $0 = {}
Expecting sub string: vector_type
Matched
llvm-svn: 167033
Removing the IsDynamic() and GetStaticValue() calls, so that they will default to the base class behavior:
- non-dynamic
- itself as the static value
This is in contrast with the previous behavior which could be confusing and could potentially cause issues when using those objects
llvm-svn: 166857
Added a new API call to help efficiently determine if a SBValue could have children:
bool
SBValue::MightHaveChildren ();
This is inteneded to be used bui GUI programs that need to show if a SBValue needs a disclosure triangle when displaying a hierarchical type in a tree view without having to complete the type (by calling SBValue::GetNumChildren()) as completing the type is expensive.
llvm-svn: 166460
Given our implementation of ValueObjects we could have a scenario where a ValueObject has a dynamic type of Foo* at one point, and then its dynamic type changes to Bar*
If Bar* has synthetic children enabled, by the time we figure that out, our public API is already vending SBValues wrapping a DynamicVO, instead of a SyntheticVO and there was
no trivial way for us to change the SP inside an SBValue on the fly
This checkin reimplements SBValue in terms of a wrapper, ValueImpl, that allows this substitutions on-the-fly by overriding GetSP() to do The Right Thing (TM)
As an additional bonus, GetNonSyntheticValue() now works, and we can get rid of the ForceDisableSyntheticChildren idiom in ScriptInterpreterPython
Lastly, this checkin makes sure the synthetic VOs get the correct m_value and m_data from their parents (prevented summaries from working in some cases)
llvm-svn: 166426
Dynamic type code must be efficient and fast. Now it is.
Added ObjC v1 support for getting the complete list of ISA values.
The main flow of the AppleObjCRuntime subclasses is now they must override "virtual bool UpdateISAToDescriptorMap_Impl();". This function will update the complete list of ISA values and create ClassDescriptorSP objects for each one. Now we have the complete list of valid ISA values which we can use for verification when doing dynamic typing.
Refactored a bunch of stuff so that the AppleObjCRuntime subclasses don't have to implement as many functions as they used to.
llvm-svn: 165730
Added a fix for incorrect dynamic typing. Before when asking if a C++ class could be dynamic, we would answer yes for incomplete C++ classes. This turned out to have issues where if a class was not virtual, yet had its first ivar be an instance of a virtual class, we would incorrectly say that a class was virtual and we would downcast it to be a pointer to the first ivar. We now ask the class to complete itself prior to answering the question. We need to test the effects on memory of this change prior to submission. It is the safest and best fix, but it does have a potential downside of higher memory consumption.
llvm-svn: 163014
Make breakpoint setting by file and line much more efficient by only looking for inlined breakpoint locations if we are setting a breakpoint in anything but a source implementation file. Implementing this complex for a many reasons. Turns out that parsing compile units lazily had some issues with respect to how we need to do things with DWARF in .o files. So the fixes in the checkin for this makes these changes:
- Add a new setting called "target.inline-breakpoint-strategy" which can be set to "never", "always", or "headers". "never" will never try and set any inlined breakpoints (fastest). "always" always looks for inlined breakpoint locations (slowest, but most accurate). "headers", which is the default setting, will only look for inlined breakpoint locations if the breakpoint is set in what are consudered to be header files, which is realy defined as "not in an implementation source file".
- modify the breakpoint setting by file and line to check the current "target.inline-breakpoint-strategy" setting and act accordingly
- Modify compile units to be able to get their language and other info lazily. This allows us to create compile units from the debug map and not have to fill all of the details in, and then lazily discover this information as we go on debuggging. This is needed to avoid parsing all .o files when setting breakpoints in implementation only files (no inlines). Otherwise we would need to parse the .o file, the object file (mach-o in our case) and the symbol file (DWARF in the object file) just to see what the compile unit was.
- modify the "SymbolFileDWARFDebugMap" to subclass lldb_private::Module so that the virtual "GetObjectFile()" and "GetSymbolVendor()" functions can be intercepted when the .o file contenst are later lazilly needed. Prior to this fix, when we first instantiated the "SymbolFileDWARFDebugMap" class, we would also make modules, object files and symbol files for every .o file in the debug map because we needed to fix up the sections in the .o files with information that is in the executable debug map. Now we lazily do this in the DebugMapModule::GetObjectFile()
Cleaned up header includes a bit as well.
llvm-svn: 162860
Fix confusing error message about "expression did not evaluate to an address" when doing 'watchpoint set expression".
Instead of using 0 as the fail_value when invoking ValueObject::GetValueAsUnsigned(), modify the API to take an addition
bool pointer (defaults to NULL) to indicate success/failure of value conversion.
llvm-svn: 158016
ValueObject, and make sure that ValueObjects that
have null type names (because they have null types)
also have null qualified type names. This avoids
some potential crashes if
ValueObject::GetQualifiedTypeName tries to get the
name of their type by calling GetClangTypeImpl().
llvm-svn: 153718
A new setting enable-synthetic-value is provided on the target to disable this behavior.
There also is a new GetNonSyntheticValue() API call on SBValue to go back from synthetic to non-synthetic. There is no call to go from non-synthetic to synthetic.
The test suite has been changed accordingly.
Fallout from changes to type searching: an hack has to be played to make it possible to use maps that contain std::string due to the special name replacement operated by clang
Fixing a test case that was using libstdcpp instead of libc++ - caught as a consequence of said changes to type searching
llvm-svn: 153495
Fixed type lookups to "do the right thing". Prior to this fix, looking up a type using "foo::bar" would result in a type list that contains all types that had "bar" as a basename unless the symbol file was able to match fully qualified names (which our DWARF parser does not).
This fix will allow type matches to be made based on the basename and then have the types that don't match filtered out. Types by name can be fully qualified, or partially qualified with the new "bool exact_match" parameter to the Module::FindTypes() method.
This fixes some issue that we discovered with dynamic type resolution as well as improves the overall type lookups in LLDB.
llvm-svn: 153482
Changes to synthetic children:
- the update(self): function can now (optionally) return a value - if it returns boolean value True, ValueObjectSyntheticFilter will not clear its caches across stop-points
this should allow better performance for Python-based synthetic children when one can be sure that the child ValueObjects have not changed
- making a difference between a synthetic VO and a VO with a synthetic value: now a ValueObjectSyntheticFilter will not return itself as its own synthetic value, but will (correctly)
claim to itself be synthetic
- cleared up the internal synthetic children architecture to make a more consistent use of pointers and references instead of shared pointers when possible
- major cleanup of unnecessary #include, data and functions in ValueObjectSyntheticFilter itself
- removed the SyntheticValueType enum and replaced it with a plain boolean (to which it was equivalent in the first place)
Some clean ups to the summary generation code
Centralized the code that clears out user-visible strings and data in ValueObject
More efficient summaries for libc++ containers
llvm-svn: 153061
Don't show variable values in Xcode when they are out of scope. This allows Xcode to step a lot faster when there are many variables in the variables view.
llvm-svn: 152380
This solves an issue where a ValueObject was getting a wrong children count (usually, a huge value) and trying to resize the vector of children to fit that many ValueObject*
Added a loop detection algorithm to the synthetic children provider for std::list
Added a few more checks to the synthetic children provider for std::vector
Both std::list and std::vector's synthetic children providers now cache the count of children instead of recomputing it every time
std::map has a field that stores the count, so there is little need to cache it on our side
llvm-svn: 152371
fixed a few potential NULL-pointer derefs in ValueObject
we have a way to provide docstrings for properties we add to the SWIG layer - a few of these properties have a docstring already, more will come in future commits
added a new bunch of properties to SBData to make it more natural and Python-like to access the data they contain
llvm-svn: 151962
2) providing an updated list of tagged pointers values for the objc_runtime module - hopefully this one is final
3) changing ValueObject::DumpValueObject to use an Options class instead of providing a bulky list of parameters to pass around
this change had been laid out previously, but some clients of DumpValueObject() were still using the old prototype and some arguments
were treated in a special way and passed in directly instead of through the Options class
4) providing new GetSummaryAsCString() and GetValueAsCString() calls in ValueObject that are passed a formatter object and a destination string
and fill the string by formatting themselves using the formatter argument instead of the default for the current ValueObject
5) removing the option to have formats and summaries stick to a variable for the current stoppoint
after some debate, we are going with non-sticky: if you say frame variable --format hex foo, the hex format will only be applied to the current command execution and not stick when redisplaying foo
the other option would be full stickiness, which means that foo would be formatted as hex for its whole lifetime
we are open to suggestions on what feels "natural" in this regard
llvm-svn: 151801
a) adds a Python summary provider for NSDate
b) changes the initialization for ScriptInterpreter so that we are not passing a bulk of Python-specific function pointers around
c) provides a new ScriptInterpreterObject class that allows for ref-count safe wrapping of scripting objects on the C++ side
d) contains much needed performance improvements:
1) the pointer to the Python function generating a scripted summary is now cached instead of looked up every time
2) redundant memory reads in the Python ObjC runtime wrapper are eliminated
3) summaries now use the m_summary_str in ValueObject to store their data instead of passing around ( == copying) an std::string object
e) contains other minor fixes, such as adding descriptive error messages for some cases of summary generation failure
llvm-svn: 151703
Fixed an error where if we tried to format a ValueObject using a format
that was incorrect for a variable, then it would set ValueObject::m_error
to an error state and stop the value from being able to be updated. We now
leave m_error alone and only let the update value code change that. Any errors
in formatting will return a valid value as C string that contains an error
string. This lets us then modify the format and redisplay without any issues.
llvm-svn: 151581
I started work on being able to add symbol files after a debug session
had started with a new "target symfile add" command and quickly ran into
problems with stale Address objects in breakpoint locations that had
lldb_private::Section pointers into modules that had been removed or
replaced. This also let to grabbing stale modules from those sections.
So I needed to thread harded the Address, Section and related objects.
To do this I modified the ModuleChild class to now require a ModuleSP
on initialization so that a weak reference can created. I also changed
all places that were handing out "Section *" to have them hand out SectionSP.
All ObjectFile, SymbolFile and SymbolVendors were inheriting from ModuleChild
so all of the find plug-in, static creation function and constructors now
require ModuleSP references instead of Module *.
Address objects now have weak references to their sections which can
safely go stale when a module gets destructed.
This checkin doesn't complete the "target symfile add" command, but it
does get us a lot clioser to being able to do such things without a high
risk of crashing or memory corruption.
llvm-svn: 151336
Objective-C classes. This allows LLDB to find
ivars declared in class extensions in modules other
than where the debugger is currently stopped (we
already supported this when the debugger was
stopped in the same module as the definition).
This involved the following main changes:
- The ObjCLanguageRuntime now knows how to hunt
for the authoritative version of an Objective-C
type. It looks for the symbol indicating a
definition, and then gets the type from the
module containing that symbol.
- ValueObjects now report their type with a
potential override, and the override is set if
the type of the ValueObject is an Objective-C
class or pointer type that is defined somewhere
other than the original reported type. This
means that "frame variable" will always use the
complete type if one is available.
- The ClangASTSource now looks for the complete
type when looking for ivars. This means that
"expr" will always use the complete type if one
is available.
- I added a testcase that verifies that both
"frame variable" and "expr" work.
llvm-svn: 151214
internals. The first part of this is to use a new class:
lldb_private::ExecutionContextRef
This class holds onto weak pointers to the target, process, thread and frame
and it also contains the thread ID and frame Stack ID in case the thread and
frame objects go away and come back as new objects that represent the same
logical thread/frame.
ExecutionContextRef objcets have accessors to access shared pointers for
the target, process, thread and frame which might return NULL if the backing
object is no longer available. This allows for references to persistent program
state without needing to hold a shared pointer to each object and potentially
keeping that object around for longer than it needs to be.
You can also "Lock" and ExecutionContextRef (which contains weak pointers)
object into an ExecutionContext (which contains strong, or shared pointers)
with code like
ExecutionContext exe_ctx (my_obj->GetExectionContextRef().Lock());
llvm-svn: 150801
New public API for handling formatters: creating, deleting, modifying categories, and formatters, and managing type/formatter association.
This provides SB classes for each of the main object types involved in providing formatter support:
SBTypeCategory
SBTypeFilter
SBTypeFormat
SBTypeSummary
SBTypeSynthetic
plus, an SBTypeNameSpecifier class that is used on the public API layer to abstract the notion that formatters can be applied to plain type-names as well as to regular expressions
For naming consistency, this patch also renames a lot of formatters-related classes.
Plus, the changes in how flags are handled that started with summaries is now extended to other classes as well. A new enum (lldb::eTypeOption) is meant to support this on the public side.
The patch also adds several new calls to the formatter infrastructure that are used to implement by-index accessing and several other design changes required to accommodate the new API layer.
An architectural change is introduced in that backing objects for formatters now become writable. On the public API layer, CoW is implemented to prevent unwanted propagation of changes.
Lastly, there are some modifications in how the "default" category is constructed and managed in relation to other categories.
llvm-svn: 150558
instead of the __repr__. __repr__ is a function that should return an
expression that can be used to recreate an python object and we were using
it to just return a human readable string.
Fixed a crasher when using the new implementation of SBValue::Cast(SBType).
Thread hardened lldb::SBValue and lldb::SBWatchpoint and did other general
improvements to the API.
Fixed a crasher in lldb::SBValue::GetChildMemberWithName() where we didn't
correctly handle not having a target.
llvm-svn: 149743
due to RTTI worries since llvm and clang don't use RTTI, but I was able to
switch back with no issues as far as I can tell. Once the RTTI issue wasn't
an issue, we were looking for a way to properly track weak pointers to objects
to solve some of the threading issues we have been running into which naturally
led us back to std::tr1::weak_ptr. We also wanted the ability to make a shared
pointer from just a pointer, which is also easily solved using the
std::tr1::enable_shared_from_this class.
The main reason for this move back is so we can start properly having weak
references to objects. Currently a lldb_private::Thread class has a refrence
to its parent lldb_private::Process. This doesn't work well when we now hand
out a SBThread object that contains a shared pointer to a lldb_private::Thread
as this SBThread can be held onto by external clients and if they end up
using one of these objects we can easily crash.
So the next task is to start adopting std::tr1::weak_ptr where ever it makes
sense which we can do with lldb_private::Debugger, lldb_private::Target,
lldb_private::Process, lldb_private::Thread, lldb_private::StackFrame, and
many more objects now that they are no longer using intrusive ref counted
pointer objects (you can't do std::tr1::weak_ptr functionality with intrusive
pointers).
llvm-svn: 149207
The previous approach to controlling the recursion was doing it from
outside the function which is not reliable. Now it is being done inside
the function. This might not solve all of the crashes that we were seeing
since there are other functions that clear the bit that indicates that
the summary is in the process of being generated, but it might solve some.
llvm-svn: 147741
as part of the thread format output.
Currently this is only done for the ThreadPlanStepOut.
Add a convenience API ABI::GetReturnValueObject.
Change the ValueObject::EvaluationPoint to BE an ExecutionContextScope, rather than
trying to hand out one of its subsidiary object's pointers. That way this will always
be good.
llvm-svn: 146806
hard to ensure it doesn't get invalidated out from under us. Instead look it up from the ThreadID
and StackID when asked for it.
<rdar://problem/10554409>
llvm-svn: 146309
in the same hashed format as the ".apple_names", but they map objective C
class names to all of the methods and class functions. We need to do this
because in the DWARF the methods for Objective C are never contained in the
class definition, they are scattered about at the translation unit level and
they don't even have attributes that say the are contained within the class
itself.
Added 3 new formats which can be used to display data:
eFormatAddressInfo
eFormatHexFloat
eFormatInstruction
eFormatAddressInfo describes an address such as function+offset and file+line,
or symbol + offset, or constant data (c string, 2, 4, 8, or 16 byte constants).
The format character for this is "A", the long format is "address".
eFormatHexFloat will print out the hex float format that compilers tend to use.
The format character for this is "X", the long format is "hex float".
eFormatInstruction will print out disassembly with bytes and it will use the
current target's architecture. The format character for this is "i" (which
used to be being used for the integer format, but the integer format also has
"d", so we gave the "i" format to disassembly), the long format is
"instruction".
Mate the lldb::FormatterChoiceCriterion enumeration private as it should have
been from the start. It is very specialized and doesn't belong in the public
API.
llvm-svn: 143114
"const char *" is NULL. Also cleaned up the display of strings when you have
an array of chars that are all NULL. Previously we were showing: ""...
We now show: ""
llvm-svn: 141223
shared pointers.
Changed the ExecutionContext over to use shared pointers for
the target, process, thread and frame since these objects can
easily go away at any time and any object that was holding onto
an ExecutionContext was running the risk of using a bad object.
Now that the shared pointers for target, process, thread and
frame are just a single pointer (they all use the instrusive
shared pointers) the execution context is much safer and still
the same size.
Made the shared pointers in the the ExecutionContext class protected
and made accessors for all of the various ways to get at the pointers,
references, and shared pointers.
llvm-svn: 140298
__attribute__ format so the compiler knows that this method takes
printf style formatter arguments and checks that it's being used
correctly. Fix a couple dozen incorrect SetErrorStringWithFormat()
calls throughout the sources.
llvm-svn: 140115
Reduced the amount of memory required to avoid loops in DumpPrintableRepresentation() from 32 bits down to 1 bit
- Additionally, disallowed creating summary strings of the form ${var%S} which did nothing but cause endless loops by definition
llvm-svn: 139201
- introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from
a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored
in frozen objects ; now such reads transparently move from host to target as required
- as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also
removed code that enabled to recognize an expression result VO as such
- introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO
representing a T* or T[], and doing dereferences transparently
in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData
- as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it
en lieu of doing the raw read itself
- introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers,
this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory)
in public layer this returns an SBData, just like GetPointeeData()
- introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData
the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any
of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values
- added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing
Solved a bug where global pointers to global variables were not dereferenced correctly for display
New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128
Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command
Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type
of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file
addresses that generate file address children UNLESS we have a live process)
Updated help text for summary-string
Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers
Edited the syntax and help for some commands to have proper argument types
llvm-svn: 139160