This brings back the original version of D81359.
I have found several use cases now.
* Unlike GNU ld, LLD's relocation processing is one pass. If we decide to
optimize(relax) R_X86_64_{,REX_}GOTPCRELX, we will suppress GOT generation and
cannot undo the decision later. Optimizing R_X86_64_REX_GOTPCRELX can usually
make it easy to hit `relocation R_X86_64_REX_GOTPCRELX out of range` because
the distance to GOT is usually shorter. Without --no-relax, the user has to
recompile with `-Wa,-mrelax-relocations=no`.
* The option would help during my investigationg of the root cause of https://git.kernel.org/linus/09e43968db40c33a73e9ddbfd937f46d5c334924
* There is need for relaxation for AArch64 & RISC-V. Implementing this for
x86-64 improves consistency with little target-specific cost (two-line
X86_64.cpp change).
Reviewed By: alexander-shaposhnikov
Differential Revision: https://reviews.llvm.org/D113615
Similar to D69607 but for archive member extraction unrelated to GC. This patch adds --why-extract=.
Prior art:
GNU ld -M prints
```
Archive member included to satisfy reference by file (symbol)
a.a(a.o) main.o (a)
b.a(b.o) (b())
```
-M is mainly for input section/symbol assignment <-> output section mapping
(often huge output) and the information may appear ad-hoc.
Apple ld64
```
__Z1bv forced load of b.a(b.o)
_a forced load of a.a(a.o)
```
It doesn't say the reference file.
Arm's proprietary linker
```
Selecting member vsnprintf.o(c_wfu.l) to define vsnprintf.
...
Loading member vsnprintf.o from c_wfu.l.
definition: vsnprintf
reference : _printf_a
```
---
--why-extract= gives the user the full data (which is much shorter than GNU ld
-Map). It is easy to track a chain of references to one archive member with a
one-liner, e.g.
```
% ld.lld main.o a_b.a b_c.a c.a -o /dev/null --why-extract=- | tee stdout
reference extracted symbol
main.o a_b.a(a_b.o) a
a_b.a(a_b.o) b_c.a(b_c.o) b()
b_c.a(b_c.o) c.a(c.o) c()
% ruby -ane 'BEGIN{p={}}; p[$F[1]]=[$F[0],$F[2]] if $.>1; END{x="c.a(c.o)"; while y=p[x]; puts "#{y[0]} extracts #{x} to resolve #{y[1]}"; x=y[0] end}' stdout
b_c.a(b_c.o) extracts c.a(c.o) to resolve c()
a_b.a(a_b.o) extracts b_c.a(b_c.o) to resolve b()
main.o extracts a_b.a(a_b.o) to resolve a
```
Archive member extraction happens before --gc-sections, so this may not be a live path
under --gc-sections, but I think it is a good approximation in practice.
* Specifying a file avoids output interleaving with --verbose.
* Required `=` prevents accidental overwrite of an input if the user forgets `=`. (Most of compiler drivers' long options accept `=` but not ` `)
Differential Revision: https://reviews.llvm.org/D109572
This is available in GNU ld 2.35 and can be seen as a shortcut for multiple
--export-dynamic-symbol, or a --dynamic-list variant without the symbolic intention.
In the long term, this option probably should be preferred over --dynamic-list.
Reviewed By: peter.smith
Differential Revision: https://reviews.llvm.org/D107317
This option is a subset of -Bsymbolic-functions. It applies to STB_GLOBAL
STT_FUNC definitions.
The address of a vague linkage function (STB_WEAK STT_FUNC, e.g. an inline
function, a template instantiation) seen by a -Bsymbolic-functions linked
shared object may be different from the address seen from outside the shared
object. Such cases are uncommon. (ELF/Mach-O programs may use
`-fvisibility-inlines-hidden` to break such pointer equality. On Windows,
correct dllexport and dllimport are needed to make pointer equality work.
Windows link.exe enables /OPT:ICF by default so different inline functions may
have the same address.)
```
// a.cc -> a.o -> a.so (-Bsymbolic-functions)
inline void f() {}
void *g() { return (void *)&f; }
// b.cc -> b.o -> exe
// The address is different!
inline void f() {}
```
-Bsymbolic-non-weak-functions is a safer (C++ conforming) subset of
-Bsymbolic-functions, which can make such programs work.
Implementations usually emit a vague linkage definition in a COMDAT group. We
could detect the group (with more code) but I feel that we should just check
STB_WEAK for simplicity. A weak definition will thus serve as an escape hatch
for rare cases when users want interposition on definitions.
GNU ld feature request: https://sourceware.org/bugzilla/show_bug.cgi?id=27871
Longer write-up: https://maskray.me/blog/2021-05-16-elf-interposition-and-bsymbolic
If Linux distributions migrate to protected non-vague-linkage external linkage
functions by default, the linker option can still be handy because it allows
rapid experiment without recompilation. Protected function addresses currently
have deep issues in GNU ld.
Reviewed By: peter.smith
Differential Revision: https://reviews.llvm.org/D102570
This option will be available in GNU ld 2.27 (https://sourceware.org/bugzilla/show_bug.cgi?id=27834).
This option can cancel previously specified -Bsymbolic and
-Bsymbolic-functions. This is useful for excluding some links when the
default uses -Bsymbolic-functions.
Reviewed By: jhenderson, peter.smith
Differential Revision: https://reviews.llvm.org/D102383
This is a slight improvement to the help text, as I was slightly
surprised when strip-all did more than remove the symbol table.
Currently, we match gold's help text for strip-all and strip-debug.
I think that the GNU documentation for these options is not particularly
clear. However, I have opted to make only a minor change here and keep
the help text similar to gold's as these are mature options that are
well understood.
ld.bfd (https://sourceware.org/binutils/docs/ld/Options.html) has a
similar implication although it defines strip-debug as a subset of
strip-all. However, felt that noting that strip-all implies strip-debug
is better; because, with the ld.bfd approach you have to read both the
--strip-debug and the --strip-all help text to understand the behaviour
of --strip-all (and the --strip-all help text doesn't indicate that he
--strip-debug help text is related).
Differential Revision: https://reviews.llvm.org/D101890
`--shuffle-sections=<seed>` applies to all sections. The new
`--shuffle-sections=<section-glob>=<seed>` makes shuffling selective. To the
best of my knowledge, the option is only used as debugging, so just drop the
original form.
`--shuffle-sections '.init_array*=-1'` `--shuffle-sections '.fini_array*=-1'`.
reverses static constructors/destructors of the same priority.
Useful to detect some static initialization order fiasco.
`--shuffle-sections '.data*=-1'`
reverses `.data*` sections. Useful to detect unfunded pointer comparison results
of two unrelated objects.
If certain sections have an intrinsic order, the old form cannot be used.
Differential Revision: https://reviews.llvm.org/D98679
If the number of sections changes, which is common for re-links after
incremental updates, the section order may change drastically.
Special case -1 to reverse input sections. This is a stable transform.
The section order is more resilient to incremental updates. Usually the
code issue (e.g. Static Initialization Order Fiasco, assuming pointer
comparison result of two unrelated objects) is due to the relative order
between two problematic input files A and B. Checking the regular order
and the reversed order is sufficient.
Differential Revision: https://reviews.llvm.org/D98445
For one metadata section usage, each text section references a metadata section.
The metadata sections have a C identifier name to allow the runtime to collect them via `__start_/__stop_` symbols.
Since `__start_`/`__stop_` references are always present from live sections, the
C identifier name sections appear like GC roots, which means they cannot be
discarded by `ld --gc-sections`.
To make such sections GCable, either SHF_LINK_ORDER or a section group is needed.
SHF_LINK_ORDER is not suitable for the references can be inlined into other functions
(See D97430:
Function A (in the section .text.A) references its `__sancov_guard` section.
Function B inlines A (so now .text.B references `__sancov_guard` - this is invalid with the semantics of SHF_LINK_ORDER).
In the linking stage,
if `.text.A` gets discarded, and `__sancov_guard` is retained via the reference from `.text.B`,
the output will be invalid because `__sancov_guard` references the discarded `.text.A`.
LLD errors "sh_link points to discarded section".
)
A section group have size overhead, and is cumbersome when there is just one metadata section.
Add `-z start-stop-gc` to drop the "__start_/__stop_ references retain
non-SHF_LINK_ORDER non-SHF_GROUP C identifier name sections" rule.
We reserve the rights to switch the default in the future.
Reviewed By: phosek, jrtc27
Differential Revision: https://reviews.llvm.org/D96914
If foo is referenced in any object file, bitcode file or shared object,
`__wrap_foo` should be retained as the redirection target of sym
(f96ff3c0f8).
If the object file defining foo has foo references, we cannot easily distinguish
the case from cases where foo is not referenced (we haven't scanned
relocations). Retain `__wrap_foo` because we choose to wrap sym references
regardless of whether sym is defined to keep non-LTO/LTO/relocatable links' behaviors similar
https://sourceware.org/bugzilla/show_bug.cgi?id=26358 .
If foo is defined in a shared object, `__wrap_foo` can still be omitted
(`wrap-dynamic-undef.s`).
Reviewed By: andrewng
Differential Revision: https://reviews.llvm.org/D95152
This patch changes the archive handling to enable the semantics needed
for legacy FORTRAN common blocks and block data. When we have a COMMON
definition of a symbol and are including an archive, LLD will now
search the members for global/weak defintions to override the COMMON
symbol. The previous LLD behavior (where a member would only be included
if it satisifed some other needed symbol definition) can be re-enabled with the
option '-no-fortran-common'.
Differential Revision: https://reviews.llvm.org/D86142
Make it possible for lld users to provide a custom script that would help to
find missing libraries. A possible scenario could be:
% clang /tmp/a.c -fuse-ld=lld -loauth -Wl,--error-handling-script=/tmp/addLibrary.py
unable to find library -loauth
looking for relevant packages to provides that library
liboauth-0.9.7-4.el7.i686
liboauth-devel-0.9.7-4.el7.i686
liboauth-0.9.7-4.el7.x86_64
liboauth-devel-0.9.7-4.el7.x86_64
pix-1.6.1-3.el7.x86_64
Where addLibrary would be called with the missing library name as first argument
(in that case addLibrary.py oauth)
Differential Revision: https://reviews.llvm.org/D87758
... to customize the tombstone value we use for an absolute relocation
referencing a discarded symbol. This can be used as a workaround when
some debug processing tool has trouble with current -1 tombstone value
(https://bugs.chromium.org/p/chromium/issues/detail?id=1102223#c11 )
For example, to get the current built-in rules (not considering the .debug_line special case for ICF):
```
-z dead-reloc-in-nonalloc='.debug_*=0xffffffffffffffff'
-z dead-reloc-in-nonalloc=.debug_loc=0xfffffffffffffffe
-z dead-reloc-in-nonalloc=.debug_ranges=0xfffffffffffffffe
```
To get GNU ld (as of binutils 2.35)'s behavior:
```
-z dead-reloc-in-nonalloc='*=0'
-z dead-reloc-in-nonalloc=.debug_ranges=1
```
This option has other use cases. For example, if we want to check
whether a non-SHF_ALLOC section has dead relocations.
With this patch, we can run a regular LLD and run another with a special
-z dead-reloc-in-nonalloc=, then compare their output.
Reviewed By: thakis
Differential Revision: https://reviews.llvm.org/D83264
In GNU ld, --no-relax can disable x86-64 GOTPCRELX relaxation.
It is not useful, so we don't implement it.
For RISC-V, --no-relax disables linker relaxations which have larger
impact.
Linux kernel specifies --no-relax when CONFIG_DYNAMIC_FTRACE is specified
(since http://git.kernel.org/linus/a1d2a6b4cee858a2f27eebce731fbf1dfd72cb4e ).
LLD has not implemented the relaxations, so this option is a no-op.
Reviewed By: grimar
Differential Revision: https://reviews.llvm.org/D81359
GNU ld from binutils 2.35 onwards will likely support
--export-dynamic-symbol but with different semantics.
https://sourceware.org/pipermail/binutils/2020-May/111302.html
Differences:
1. -export-dynamic-symbol is not supported
2. --export-dynamic-symbol takes a glob argument
3. --export-dynamic-symbol can suppress binding the references to the definition within the shared object if (-Bsymbolic or -Bsymbolic-functions)
4. --export-dynamic-symbol does not imply -u
I don't think the first three points can affect any user.
For the fourth point, Not implying -u can lead to some archive members unfetched.
Add -u foo to restore the previous behavior.
Exact semantics:
* -no-pie or -pie: matched non-local defined symbols will be added to the dynamic symbol table.
* -shared: matched non-local STV_DEFAULT symbols will not be bound to definitions within the shared object
even if they would otherwise be due to -Bsymbolic, -Bsymbolic-functions, or --dynamic-list.
Reviewed By: psmith
Differential Revision: https://reviews.llvm.org/D80487
LLD supports both REL and RELA for static relocations, but emits either
of REL and RELA for dynamic relocations. The relocation entry format is
specified by each psABI.
musl ld.so supports both REL and RELA. For such ld.so implementations,
REL (.rel.dyn .rel.plt) has size benefits even if the psABI chooses RELA:
sizeof(Elf64_Rel)=16 < sizeof(Elf64_Rela)=24.
* COPY, GLOB_DAT and J[U]MP_SLOT always have 0 addend. A ld.so
implementation does not need to read the implicit addend.
REL is strictly better.
* A RELATIVE has a non-zero addend. Such relocations can be packed
compactly with the RELR relocation entry format, which is out of scope
of this patch.
* For other dynamic relocation types (e.g. symbolic relocation R_X86_64_64),
a ld.so implementation needs to read the implicit addend. REL may have
minor performance impact, because reading implicit addends forces
random access reads instead of being able to blast out a bunch of
writes while chasing the relocation array.
This patch adds -z rel and -z rela to change the relocation entry format
for dynamic relocations. I have tested that a -z rel produced x86-64
executable works with musl ld.so
-z rela may be useful for debugging purposes on processors whose psABIs
specify REL as the canonical format: addends can be easily read by a tool.
Reviewed By: grimar, mcgrathr
Differential Revision: https://reviews.llvm.org/D80496
gold has an option --print-symbol-counts= which prints:
// For each archive
archive $archive $members $fetched_members
// For each object file
symbols $object $defined_symbols $used_defined_symbols
In most cases, `$defined_symbols = $used_defined_symbols` unless weak
symbols are present. Strangely `$used_defined_symbols` includes symbols defined relative to --gc-sections discarded sections.
The `symbols` lines do not appear to be useful.
`archive` lines are useful: `$fetched_members=0` lines correspond to
unused archives. The information can be used to trim dependencies.
This patch implements --print-archive-stats= which prints the number of
members and the number of fetched members for each archive.
Reviewed By: grimar
Differential Revision: https://reviews.llvm.org/D78983
D77522 changed --warn-backrefs to not warn for linking sandwich
problems (-ldef1 -lref -ldef2). This removed lots of false positives.
However, glibc still has some problems. libc.a defines some symbols
which are normally in libm.a and libpthread.a, e.g. __isnanl/raise.
For a linking order `-lm -lpthread -lc`, I have seen:
```
// different resolutions: GNU ld/gold select libc.a(s_isnan.o) as the definition
backward reference detected: __isnanl in libc.a(printf_fp.o) refers to libm.a(m_isnanl.o)
// different resolutions: GNU ld/gold select libc.a(raise.o) as the definition
backward reference detected: raise in libc.a(abort.o) refers to libpthread.a(pt-raise.o)
```
To facilitate deployment of --warn-backrefs, add --warn-backrefs-exclude= so that
certain known issues (which may be impractical to fix) can be whitelisted.
Deliberate choices:
* Not a comma-separated list (`--warn-backrefs-exclude=liba.a,libb.a`).
-Wl, splits the argument at commas, so we cannot use commas.
--export-dynamic-symbol is similar.
* Not in the style of `--warn-backrefs='*' --warn-backrefs=-liba.a`.
We just need exclusion, not inclusion. For easier build system
integration, we should avoid order dependency. With the current
scheme, we enable --warn-backrefs, and indivial libraries can add
--warn-backrefs-exclude=<glob> to their LDFLAGS.
Reviewed By: psmith
Differential Revision: https://reviews.llvm.org/D77512
--no-threads is a name copied from gold.
gold has --no-thread, --thread-count and several other --thread-count-*.
There are needs to customize the number of threads (running several lld
processes concurrently or customizing the number of LTO threads).
Having a single --threads=N is a straightforward replacement of gold's
--no-threads + --thread-count.
--no-threads is used rarely. So just delete --no-threads instead of
keeping it for compatibility for a while.
If --threads= is specified (ELF,wasm; COFF /threads: is similar),
--thinlto-jobs= defaults to --threads=,
otherwise all available hardware threads are used.
There is currently no way to override a --threads={1,2,...}. It is still
a debate whether we should use --threads=all.
Reviewed By: rnk, aganea
Differential Revision: https://reviews.llvm.org/D76885
Summary:
Places orphan sections into a unique output section. This prevents the merging of orphan sections of the same name.
Matches behaviour of GNU ld --unique. --unique=pattern is not implemented.
Motivated user case shown in the test has 2 local symbols as they would appear if C++ source has been compiled with -ffunction-sections. The merging of these sections in the case of a partial link (-r) may limit the effectiveness of -gc-sections of a subsequent link.
Reviewers: espindola, jhenderson, bd1976llvm, edd, andrewng, JonChesterfield, MaskRay, grimar, ruiu, psmith
Reviewed By: MaskRay, grimar
Subscribers: emaste, arichardson, MaskRay, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D75536
Summary:
This option causes lld to shuffle sections by assigning different
priorities in each run.
The use case for this is to introduce randomization in benchmarks. The
idea is inspired by the paper "Producing Wrong Data Without Doing
Anything Obviously Wrong!"
(https://www.inf.usi.ch/faculty/hauswirth/publications/asplos09.pdf). Unlike
the paper, we shuffle individual sections, not just input files.
Doing this in lld is particularly convenient as the --reproduce option
makes it easy to collect all the necessary bits for relinking the
program being benchmarked. Once that it is done, all that is needed is
to add --shuffle-sections=0 to the response file and relink before each
run of the benchmark.
Differential Revision: https://reviews.llvm.org/D74791
This patch is a joint work by Rui Ueyama and me based on D58102 by Xiang Zhang.
It adds Intel CET (Control-flow Enforcement Technology) support to lld.
The implementation follows the draft version of psABI which you can
download from https://github.com/hjl-tools/x86-psABI/wiki/X86-psABI.
CET introduces a new restriction on indirect jump instructions so that
you can limit the places to which you can jump to using indirect jumps.
In order to use the feature, you need to compile source files with
-fcf-protection=full.
* IBT is enabled if all input files are compiled with the flag. To force enabling ibt, pass -z force-ibt.
* SHSTK is enabled if all input files are compiled with the flag, or if -z shstk is specified.
IBT-enabled executables/shared objects have two PLT sections, ".plt" and
".plt.sec". For the details as to why we have two sections, please read
the comments.
Reviewed By: xiangzhangllvm
Differential Revision: https://reviews.llvm.org/D59780
Add a new '-z nognustack' option that suppresses emitting PT_GNU_STACK
segment. This segment is not supported at all on NetBSD (stack is
always non-executable), and the option is meant to be used to disable
emitting it.
Differential Revision: https://reviews.llvm.org/D56554
D64906 allows PT_LOAD to have overlapping p_offset ranges. In the
default R RX RW RW layout + -z noseparate-code case, we do not tail pad
segments when transiting to another segment. This can save at most
3*maxPageSize bytes.
a) Before D64906, we tail pad R, RX and the first RW.
b) With -z separate-code, we tail pad R and RX, but not the first RW (RELRO).
In some cases, b) saves one file page. In some cases, b) wastes one
virtual memory page. The waste is a concern on Fuchsia. Because it uses
compressed binaries, it doesn't benefit from the saved file page.
This patch adds -z separate-loadable-segments to restore the behavior before
D64906. It can affect section addresses and can thus be used as a
debugging mechanism (see PR43214 and ld.so partition bug in
crbug.com/998712).
Reviewed By: jakehehrlich, ruiu
Differential Revision: https://reviews.llvm.org/D67481
llvm-svn: 372807
Building on D60557 mention the name of the linker generated contents of
the reproduce archive, response.txt and version.txt.
Also write a shorter description in the ld.lld --help that is closer to
the documentation.
Differential Revision: https://reviews.llvm.org/D66641
llvm-svn: 369762
I think --reproduce is no longer a debug-only option but a useful
option that a common user may want to use. So, this patch updates
the description of the option in the manual page.
Differential Revision: https://reviews.llvm.org/D60557
llvm-svn: 369740
This patch adds new command line option `--undefined-glob` to lld.
That option is a variant of `--undefined` but accepts wildcard
patterns so that all symbols that match with a given pattern are
handled as if they were given by `-u`.
`-u foo` is to force resolve symbol foo if foo is not a defined symbol
and there's a static archive that contains a definition of symbol foo.
Now, you can specify a wildcard pattern as an argument for `--undefined-glob`.
So, if you want to include all JNI symbols (which start with "Java_"), you
can do that by passing `--undefined-glob "Java_*"` to the linker, for example.
In this patch, I use the same glob pattern matcher as the version script
processor is using, so it does not only support `*` but also `?` and `[...]`.
Differential Revision: https://reviews.llvm.org/D63244
llvm-svn: 363396
Branch Target Identification (BTI) and Pointer Authentication (PAC) are
architecture features introduced in v8.5a and 8.3a respectively. The new
instructions have been added in the hint space so that binaries take
advantage of support where it exists yet still run on older hardware. The
impact of each feature is:
BTI: For executable pages that have been guarded, all indirect branches
must have a destination that is a BTI instruction of the appropriate type.
For the static linker, this means that PLT entries must have a "BTI c" as
the first instruction in the sequence. BTI is an all or nothing
property for a link unit, any indirect branch not landing on a valid
destination will cause a Branch Target Exception.
PAC: The dynamic loader encodes with PACIA the address of the destination
that the PLT entry will load from the .plt.got, placing the result in a
subset of the top-bits that are not valid virtual addresses. The PLT entry
may authenticate these top-bits using the AUTIA instruction before
branching to the destination. Use of PAC in PLT sequences is a contract
between the dynamic loader and the static linker, it is independent of
whether the relocatable objects use PAC.
BTI and PAC are independent features that can be combined. So we can have
several combinations of PLT:
- Standard with no BTI or PAC
- BTI PLT with "BTI c" as first instruction.
- PAC PLT with "AUTIA1716" before the indirect branch to X17.
- BTIPAC PLT with "BTI c" as first instruction and "AUTIA1716" before the
first indirect branch to X17.
The use of BTI and PAC in relocatable object files are encoded by feature
bits in the .note.gnu.property section in a similar way to Intel CET. There
is one AArch64 specific program property GNU_PROPERTY_AARCH64_FEATURE_1_AND
and two target feature bits defined:
- GNU_PROPERTY_AARCH64_FEATURE_1_BTI
-- All executable sections are compatible with BTI.
- GNU_PROPERTY_AARCH64_FEATURE_1_PAC
-- All executable sections have return address signing enabled.
Due to the properties of FEATURE_1_AND the static linker can tell when all
input relocatable objects have the BTI and PAC feature bits set. The static
linker uses this to enable the appropriate PLT sequence.
Neither -> standard PLT
GNU_PROPERTY_AARCH64_FEATURE_1_BTI -> BTI PLT
GNU_PROPERTY_AARCH64_FEATURE_1_PAC -> PAC PLT
Both properties -> BTIPAC PLT
In addition to the .note.gnu.properties there are two new command line
options:
--force-bti : Act as if all relocatable inputs had
GNU_PROPERTY_AARCH64_FEATURE_1_BTI and warn for every relocatable object
that does not.
--pac-plt : Act as if all relocatable inputs had
GNU_PROPERTY_AARCH64_FEATURE_1_PAC. As PAC is a contract between the loader
and static linker no warning is given if it is not present in an input.
Two processor specific dynamic tags are used to communicate that a non
standard PLT sequence is being used.
DTI_AARCH64_BTI_PLT and DTI_AARCH64_BTI_PAC.
Differential Revision: https://reviews.llvm.org/D62609
llvm-svn: 362793
Patch by Mark Johnston!
Summary:
When the option is configured, ifunc calls do not go through the PLT;
rather, they appear as regular function calls with relocations
referencing the ifunc symbol, and the resolver is invoked when
applying the relocation. This is intended for use in freestanding
environments where text relocations are permissible and is incompatible
with the -z text option. The option is motivated by ifunc usage in the
FreeBSD kernel, where ifuncs are used to elide CPU feature flag bit
checks in hot paths. Instead of replacing the cost of a branch with that
of an indirect function call, the -z ifunc-noplt option is used to ensure
that ifunc calls carry no hidden overhead relative to normal function
calls.
Test Plan:
I added a couple of regression tests and tested the FreeBSD kernel
build using the latest lld sources.
To demonstrate the effects of the change, I used a micro-benchmark
which results in frequent invocations of a FreeBSD kernel ifunc. The
benchmark was run with and without IBRS enabled, and with and without
-zifunc-noplt configured. The observed speedup is small and consistent,
and is significantly larger with IBRS enabled:
https://people.freebsd.org/~markj/ifunc-noplt/noibrs.txthttps://people.freebsd.org/~markj/ifunc-noplt/ibrs.txt
Reviewed By: ruiu, MaskRay
Differential Revision: https://reviews.llvm.org/D61613
llvm-svn: 360685
The -n (--nmagic) disables page alignment, and acts as a -Bstatic
The -N (--omagic) does what -n does but also marks the executable segment as
writeable. As page alignment is disabled headers are not allocated unless
explicit in the linker script.
To disable page alignment in LLD we choose to set the page sizes to 1 so
that any alignment based on the page size does nothing. To set the
Target->PageSize to 1 we implement -z common-page-size, which has the side
effect of allowing the user to set the value as well.
Setting the page alignments to 1 does mean that any use of
CONSTANT(MAXPAGESIZE) or CONSTANT(COMMONPAGESIZE) in a linker script will
return 1, unlike in ld.bfd. However given that -n and -N disable paging
these probably shouldn't be used in a linker script where -n or -N is in
use.
Differential Revision: https://reviews.llvm.org/D61688
llvm-svn: 360593
Currently we have -Rpass for filtering the remarks that are displayed as
diagnostics, but when using -fsave-optimization-record, there is no way
to filter the remarks while generating them.
This adds support for filtering remarks by passes using a regex.
Ex: `clang -fsave-optimization-record -foptimization-record-passes=inline`
will only emit the remarks coming from the pass `inline`.
This adds:
* `-fsave-optimization-record` to the driver
* `-opt-record-passes` to cc1
* `-lto-pass-remarks-filter` to the LTOCodeGenerator
* `--opt-remarks-passes` to lld
* `-pass-remarks-filter` to llc, opt, llvm-lto, llvm-lto2
* `-opt-remarks-passes` to gold-plugin
Differential Revision: https://reviews.llvm.org/D59268
Original llvm-svn: 355964
llvm-svn: 355984
Currently we have -Rpass for filtering the remarks that are displayed as
diagnostics, but when using -fsave-optimization-record, there is no way
to filter the remarks while generating them.
This adds support for filtering remarks by passes using a regex.
Ex: `clang -fsave-optimization-record -foptimization-record-passes=inline`
will only emit the remarks coming from the pass `inline`.
This adds:
* `-fsave-optimization-record` to the driver
* `-opt-record-passes` to cc1
* `-lto-pass-remarks-filter` to the LTOCodeGenerator
* `--opt-remarks-passes` to lld
* `-pass-remarks-filter` to llc, opt, llvm-lto, llvm-lto2
* `-opt-remarks-passes` to gold-plugin
Differential Revision: https://reviews.llvm.org/D59268
llvm-svn: 355964
Summary:
This follows the ld.bfd/gold behavior.
The error check is useful as it captures a common type of ld.so undefined symbol errors as link-time errors:
// a.cc => a.so (not linked with -z defs)
void f(); // f is undefined
void g() { f(); }
// b.cc => executable with a DT_NEEDED entry on a.so
void g();
int main() { g(); }
// ld.so errors when g() is executed (lazy binding) or when the program is started (-z now)
// symbol lookup error: ... undefined symbol: f
Reviewers: ruiu, grimar, pcc, espindola
Reviewed By: ruiu
Subscribers: llvm-commits, emaste, arichardson
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D57569
llvm-svn: 352943
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
By default LLD will generate position independent Thunks when the --pie or
--shared option is used. Reference to absolute addresses is permitted in
other cases. For some embedded systems position independent thunks are
needed for code that executes before the MMU has been set up. The option
--pic-veneer is used by ld.bfd to force position independent thunks.
The patch adds --pic-veneer as the option is needed for the Linux kernel
on Arm.
fixes pr39886
Differential Revision: https://reviews.llvm.org/D55505
llvm-svn: 351326
This is https://bugs.llvm.org//show_bug.cgi?id=38978
Spec says that:
"Objects may be built with the -z nodefaultlib option to
suppress any search of the default locations at runtime.
Use of this option implies that all the dependencies of an
object can be located using its runpaths.
Without this option, which is the most common case, no
matter how you augment the runtime linker's library
search path, its last element is always /usr/lib for 32-bit
objects and /usr/lib/64 for 64-bit objects."
The patch implements this option.
Differential revision: https://reviews.llvm.org/D54577
llvm-svn: 347647