instantiated in another module, and the instantiation uses a partial
specialization, include the partial specialization and its template arguments
in the update record. We'll need them if someone imports the second module and
tries to instantiate a member of the template.
llvm-svn: 209472
ASTReaderListener's documentation states that visitInputFile will be
called based on the return values of needsInputFileVisitation and
needsSystemInputFileVisitation, but ChainedASTReaderListener may call
these methods on a child listener based on the values returned by the
other child.
Even worse, the calls to visitInputFile may be short-circuited due to
the use of the boolean or, so the calls to visit may not occur at all
for the second listener.
This updates ChainedASTReaderListener::visitInputFile to propagate the
ASTReaderListener behaviour to both children.
llvm-svn: 209394
It appears that Windows doesn't like renaming over open files, which we
do in clearOutputFiles. The file being compiled should be safe to
removed, but this isn't very satisfying - we don't want to manually
manage the lifetime of files we cannot prove have no references.
llvm-svn: 209195
declaration of that entity in from one of those modules, keep track of the fact
that we've not completed the redeclaration chain yet so that we can pull the
remaining declarations in from the other module if they're needed.
llvm-svn: 209161
Follow-up fix for 209138. Actually, since we already have this file
open, we don't want to refresh the stat() info, since that might be
newer than what we have open (bad!).
llvm-svn: 209143
FileManager::invalidateCache is not safe to call when there may be
existing references to the file. What module load failure needs is
to refresh so stale stat() info isn't stored.
This may be the last user of invalidateCache; I'll take a look and
remove it if possible in a future commit.
This caused a use-after-free error as well as a spurious error message
that a module was "found in both 'X.pcm' and 'X.pcm'" in some cases.
llvm-svn: 209138
ensure that querying the first declaration for its most recent declaration
checks for redeclarations from the imported module.
This works as follows:
* The 'most recent' pointer on a canonical declaration grows a pointer to the
external AST source and a generation number (space- and time-optimized for
the case where there is no external source).
* Each time the 'most recent' pointer is queried, if it has an external source,
we check whether it's up to date, and update it if not.
* The ancillary data stored on the canonical declaration is allocated lazily
to avoid filling it in for declarations that end up being non-canonical.
We'll still perform a redundant (ASTContext) allocation if someone asks for
the most recent declaration from a decl before setPreviousDecl is called,
but such cases are probably all bugs, and are now easy to find.
Some finessing is still in order here -- in particular, we use a very general
mechanism for handling the DefinitionData pointer on CXXRecordData, and a more
targeted approach would be more compact.
Also, the MayHaveOutOfDateDef mechanism should now be expunged, since it was
addressing only a corner of the full problem space here. That's not covered
by this patch.
Early performance benchmarks show that this makes no measurable difference to
Clang performance without modules enabled (and fixes a major correctness issue
with modules enabled). I'll revert if a full performance comparison shows any
problems.
llvm-svn: 209046
Use this to fix the leak of DeserializedDeclsDumper and DeserializedDeclsChecker
in FrontendAction (found by LSan), PR19560.
The "delete this" bool is necessary because both PCHGenerator and ASTUnit
return the same object from both getDeserializationListener() and
getASTMutationListener(), so ASTReader can't just have a unique_ptr.
It's also not possible to just let FrontendAction (or CompilerInstance) own
these listeners due to lifetime issues (see comments on PR19560).
Finally, ASTDeserializationListener can't easily be refcounted, since several of
the current listeners are allocated on the stack.
Having this bool isn't ideal, but it's a pattern that's used in other places in
the codebase too, and it seems better than leaking.
llvm-svn: 208277
Summary:
Previously, we would generate a single name for all reference
temporaries and allow LLVM to rename them for us. Instead, number the
reference temporaries as we build them in Sema.
Reviewers: rsmith
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D3554
llvm-svn: 207776
We need to open an ASTFile while checking its expected size and
modification time, or another clang instance can modify the file between
the stat() and the open().
llvm-svn: 207735
This fixes a bug where an update record causes us to load an entity that refers
to an entity we've not finished loading yet, resulting in badness.
llvm-svn: 207603
Fixed by moving ProcessWarningOptions from Frontend into Basic. All of
the dependencies for ProcessWarningOptions were already in Basic, so
this was a small change.
llvm-svn: 207549
This patch checks whether the diagnostic options that could lead to
errors (principally -Werror) are consistent between when a module was
built and when it is loaded. If there are new -Werror flags, then the
module is rebuilt. In order to canonicalize the options we do this
check at the level of the constructed DiagnosticsEngine, which contains
the final set of diag to diagnostic level mappings. Currently we only
rebuild with the new diagnostic options, but we intend to refine this in
the future to include the union of the new and old flags, since we know
the old ones did not cause errors. System modules are only rebuilt when
-Wsystem-headers is enabled.
One oddity is that unlike checking language options, we don’t perform
this diagnostic option checking when loading from a precompiled header.
The reason for this is that the compiler cannot rebuild the PCH, so
anything that requires it to be rebuilt effectively leaks into the build
system. And in this case, that would mean the build system
understanding the complex relationship between diagnostic options and
the underlying diagnostic mappings, which is unreasonable. Skipping the
check is safe, because these options do not affect the generated AST.
You simply won’t get new build errors due to changed -Werror options
automatically, which is also true for non-module cases.
llvm-svn: 207477
together. This is extremely hairy, because in general we need to have loaded
both the template and the pattern before we can determine whether either should
be merged, so we temporarily violate the rule that all merging happens before
reading a decl ends, but *only* in the case where a template's pattern is being
loaded while loading the template itself.
In order to accomodate this for class templates, delay loading the injected
class name type for the pattern of the template until after we've loaded the
template itself, if we happen to load the template first.
llvm-svn: 207063
This paves the way to making OnDiskHashTable work with hashes that are
not 32 bits wide and to making OnDiskHashTable work very large hash
tables. The LLVM change to use these types is upcoming.
llvm-svn: 206640
To differentiate between two modules with the same name, we will
consider the path the module map file that they are defined by* part of
the ‘key’ for looking up the precompiled module (pcm file).
Specifically, this patch renames the precompiled module (pcm) files from
cache-path/<module hash>/Foo.pcm
to
cache-path/<module hash>/Foo-<hash of module map path>.pcm
In addition, I’ve taught the ASTReader to re-resolve the names of
imported modules during module loading so that if the header search
context changes between when a module was originally built and when it
is loaded we can rebuild it if necessary. For example, if module A
imports module B
first time:
clang -I /path/to/A -I /path/to/B ...
second time:
clang -I /path/to/A -I /different/path/to/B ...
will now rebuild A as expected.
* in the case of inferred modules, we use the module map file that
allowed the inference, not the __inferred_module.map file, since the
inferred file path is the same for every inferred module.
llvm-svn: 206201
Currently the on disk hash table's key_iterator and data_iterator make
the assumption that the table data starts exactly four bytes after the
base of the table. This happens to be true for all of the tables we
currently iterate over, but not for all of the OnDiskHashTables we
currently use. For example, key_ and data_iterator would iterate over
meaningless data if they were used on the hash tables in PTHLexer.
We make the API safer by breaking this into two types. One doesn't
have the iterators, and the other must be told where the payload
starts.
llvm-svn: 206189
Committed this by accident before it was done last time.
Original message:
Rather than rolling our own functions to read little endian data
from a buffer, we can use the support in llvm's Endian.h.
No functional change.
llvm-svn: 205062
Committed this by accident before it was done last time.
Original message:
Rather than rolling our own functions to write little endian data
to an ostream, we can use the support in llvm's EndianStream.h.
No functional change.
llvm-svn: 205061