We don't actually need a real Mac sysroot to make the test pass, just a
linker. This makes the test pass in environments where no ld is on
PATH.
llvm-svn: 234533
The driver currently accepts but ignores the -freciprocal-math flag.
This patch passes the flag through and enables 'arcp' fast-math-flag
generation in IR.
Note that this change does not actually enable the optimization for
any target. The reassociation optimization that this flag specifies
was implemented by http://reviews.llvm.org/D6334 :
http://llvm.org/viewvc/llvm-project?view=revision&revision=222510
Because the optimization is done in the backend rather than IR,
the backend must be modified to understand instruction-level
fast-math-flags or a new function-level attribute must be created.
Also note that -freciprocal-math is independent of any target-specific
usage of reciprocal estimate hardware instructions. That requires
its own flag ('-mrecip').
https://llvm.org/bugs/show_bug.cgi?id=20912
llvm-svn: 234493
Adds ARM Cortex-R4 and R4F support and tests in Clang. Though Cortex-R4
support was present, the support for hwdiv in thumb-mode was not defined
or tested properly. This has also been added.
llvm-svn: 234488
This hooks up the /fp options as aliases for -f[no-]fast-math and
-f[no]-trapping-math. It probably doesn't match cl.exe's behaviour
completely (e.g. LLVM is currently never as precise as /fp:precise),
but it's close enough.
Differential revision: http://reviews.llvm.org/D8909
llvm-svn: 234449
Currently if you use -mmacosx-version-min or -mios-version-min without
specifying a version number, clang silently sets the minimum version to
"0.0.0". This is almost certainly not what was intended, so it is better
to report it as an error. rdar://problem/20433945
llvm-svn: 234270
Original message:
Don't use unique section names by default if using the integrated as.
This saves some IO and ccache space by not creating long section names. It
should work with every ELF linker.
llvm-svn: 234143
This reverts commit r233398, bringing back 233393 now that LLVM is fixed.
Original message:
Don't use unique section names by default if using the integrated as.
This saves some IO and ccache space by not creating long section names. It
should work with every ELF linker.
llvm-svn: 234101
This uses the same class metadata currently used for virtual call and
cast checks.
The new flag is -fsanitize=cfi-nvcall. For consistency, the -fsanitize=cfi-vptr
flag has been renamed -fsanitize=cfi-vcall.
Differential Revision: http://reviews.llvm.org/D8756
llvm-svn: 233874
Summary:
Change the way we use ASan and UBSan together. Instead of keeping two
separate runtimes (libclang_rt.asan and libclang_rt.ubsan), embed UBSan
into ASan and get rid of libclang_rt.ubsan. If UBSan is not supported on
a platform, all UBSan sources are just compiled into dummy empty object
files. UBSan initialization code (e.g. flag parsing) is directly called
from ASan initialization, so we are able to enforce correct
initialization order.
This mirrors the approach we already use for ASan+LSan. This change doesn't
modify the way we use standalone UBSan.
Test Plan: regression test suite
Reviewers: kubabrecka, zaks.anna, kcc, rsmith
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D8645
llvm-svn: 233860
The zEC12 provides the transactional-execution facility. This is exposed
to users via a set of builtin routines on other compilers. This patch
adds clang support to enable those builtins. In partciular, the patch:
- enables the transactional-execution feature by default on zEC12
- allows to override presence of that feature via the -mhtm/-mno-htm options
- adds a predefined macro __HTM__ if the feature is enabled
- adds support for the transactional-execution GCC builtins
- adds Sema checking to verify the __builtin_tabort abort code
- adds the s390intrin.h header file (for GCC compatibility)
- adds s390 sections to the htmintrin.h and htmxlintrin.h header files
Since this is first use of target-specific intrinsics on the platform,
the patch creates the include/clang/Basic/BuiltinsSystemZ.def file and
hooks it up in TargetBuiltins.h and lib/Basic/Targets.cpp.
An associated LLVM patch adds the required LLVM IR intrinsics.
For reference, the transactional-execution instructions are documented
in the z/Architecture Principles of Operation for the zEC12:
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/download/DZ9ZR009.pdf
The associated builtins are documented in the GCC manual:
http://gcc.gnu.org/onlinedocs/gcc/S_002f390-System-z-Built-in-Functions.html
The htmxlintrin.h intrinsics provided for compatibility with the IBM XL
compiler are documented in the "z/OS XL C/C++ Programming Guide".
llvm-svn: 233804
Add Tool and ToolChain support for clang to target the NaCl OS using the NaCl
SDK for x86-32, x86-64 and ARM.
Includes nacltools::Assemble and Link which are derived from gnutools. They
are similar to Linux but different enought that they warrant their own class.
Also includes a NaCl_TC in ToolChains derived from Generic_ELF with library
and include paths suitable for an SDK and independent of the system tools.
Differential Revision: http://reviews.llvm.org/D8590
llvm-svn: 233594
Unlike most of the other platforms supported by Clang, CloudABI only
supports static linkage, for the reason that global filesystem access is
prohibited. Functions provided by dlfcn.h are not present. As we know
that applications will not try to do any symbol lookups at run-time, we
can garbage collect unused code quite aggressively. Because of this, it
makes sense to enable -ffunction-sections and -fdata-sections by
default.
Object files will be a bit larger than usual, but the resulting binary
will not be affected, as the sections are merged again. However, when
--gc-sections is used, the linker is able to remove unused code far more
more aggressively. It also has the advantage that transitive library
dependencies only need to be provided to the linker in case that
functionality is actually used.
Differential Revision: http://reviews.llvm.org/D8635
Reviewed by: echristo
llvm-svn: 233299
Now that CloudABI's target information and header search logic for Clang
has been submitted, the only thing that remains to be done is adding
support for CloudABI's linker.
CloudABI uses Binutils ld, although there is some work to use lld
instead. This means that this code is largely based on what we use on
FreeBSD. There are some exceptions, however:
- Only static linking is performed. CloudABI does not support any
dynamically linked executables.
- CloudABI uses compiler-rt, libc++ and libc++abi unconditionally. Link
in these libraries instead of using libgcc_s, libstdc++, etc.
- We must ensure that the .eh_frame_hdr is present to make C++
exceptions work properly.
Differential Revision: http://reviews.llvm.org/D8250
llvm-svn: 233269
they enable/disable.
This fixes two things:
a) sse4 isn't actually a target feature, don't treat it as one.
b) we weren't correctly disabling sse4.1 when we'd pass -mno-sse4
after enabling it, thus passing preprocessor directives and
(soon) passing the function attribute as well when we shouldn't.
llvm-svn: 233223
Summary:
On my system, clang tries to invoke /path/to/arm-linux-androideabi-ld
as the linker for Android, and the regex inside the test file considers
this as unacceptable.
Reviewers: samsonov
Subscribers: tberghammer, aemerson, cfe-commits
Differential Revision: http://reviews.llvm.org/D8598
llvm-svn: 233211
Summary:
UBSan is now used in the same way as ASan, and is supported on
OSX and on iOS simulator. At the moment ASan and UBSan can't be used
together due to PR21112, but I hope to resolve it soon by
embedding UBSan into ASan.
Test Plan: regression test suite.
Reviewers: zaks.anna, kubabrecka
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D8471
llvm-svn: 233035
Get rid of "libclang_rt.san" library that used to contain
sanitizer_common pieces required by UBSan if it's used in a standalone
mode. Instead, build two variants of UBSan runtime: "ubsan" and
"ubsan_standalone" (same for "ubsan_cxx" and "ubsan_standalone_cxx").
Later "ubsan" and "ubsan_cxx" libraries will go away, as they will
embedded it into corresponding ASan runtimes.
llvm-svn: 233010
Decide whether or not to use thread-safe statics depending on whether or
not we have an explicit request from the driver. If we don't have an
explicit request, infer which behavior to use depending on the
compatibility version we are targeting.
N.B. CodeGen support is still ongoing.
llvm-svn: 232906
Summary:
We were claiming the -f*exceptions arguments when looking for the
RTTIMode. This makes us not warn about unused arguments if compiling a C
file with -fcxx-exceptions.
This patch fixes it by not claiming the exception-related arguments at
that point.
Reviewers: rsmith, samsonov
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D8507
llvm-svn: 232860
We are not able to make a reliable solution for using UBSan together
with other sanitizers with runtime support (and sanitizer_common).
Instead, we want to follow the path used for LSan: have a "standalone"
UBSan tool, and plug-in UBSan that would be explicitly embedded into
specific sanitizers (in short term, it will be only ASan).
llvm-svn: 232829
Summary: As discussed in D8097, we should provide corresponding linking flags when 'fveclib' is specified.
Reviewers: hfinkel
Differential Revision: http://reviews.llvm.org/D8362
llvm-svn: 232556
ARMv6K is another layer between ARMV6 and ARMV6T2. This is the Clang
side of the changes.
ARMV6 family LLVM implementation.
+-------------------------------------+
| ARMV6 |
+----------------+--------------------+
| ARMV6M (thumb) | ARMV6K (arm,thumb) | <- From ARMV6K and ARMV6M processors
+----------------+--------------------+ have support for hint instructions
| ARMV6T2 (arm,thumb,thumb2) | (SEV/WFE/WFI/NOP/YIELD). They can
+-------------------------------------+ be either real or default to NOP.
| ARMV7 (arm,thumb,thumb2) | The two processors also use
+-------------------------------------+ different encoding for them.
Patch by Vinicius Tinti.
llvm-svn: 232469
This scheme checks that pointer and lvalue casts are made to an object of
the correct dynamic type; that is, the dynamic type of the object must be
a derived class of the pointee type of the cast. The checks are currently
only introduced where the class being casted to is a polymorphic class.
Differential Revision: http://reviews.llvm.org/D8312
llvm-svn: 232241
For crashes with a VFS (ie, with modules), the -isysroot flag is often
necessary to reproduce the crash. This is especially true if some
modules need to be rebuilt, since without the sysroot they'll try to
read headers that are outside of the VFS.
I find it likely that we should keep some of the other -i flags in
this case as well, but I haven't seen that come up in practice yet so
it seems better to be conservative.
llvm-svn: 231997
When a crash report script doesn't work for a reproduction on your
machine for one reason or another, it can be really tricky to figure
out why not. The compiler version that crashed and the original
command line before stripping flags are very helpful when this comes
up.
llvm-svn: 231989
Support for the QPX vector instruction set, used on the IBM BG/Q supercomputer,
has recently been added to the LLVM PowerPC backend. This vector instruction
set requires some ABI modifications because the ABI on the BG/Q expects
<4 x double> vectors to be provided with 32-byte stack alignment, and to be
handled as native vector types (similar to how Altivec vectors are handled on
mainline PPC systems). I've named this ABI variant elfv1-qpx, have made this
the default ABI when QPX is supported, and have updated the ABI handling code
to provide QPX vectors with the correct stack alignment and associated
register-assignment logic.
llvm-svn: 231960
Using clang as a cross-compiler with the 'target' option could be confusing
for those inexperienced in the realm of cross compiling.
This patch would allow the use of all these four variants of the target option:
-target <triple>
--target <triple>
-target=<triple>
--target=<triple>
Patch by Gabor Ballabas.
llvm-svn: 231787
This is a recommit of r231150, reverted in r231409. Turns out
that -fsanitize=shift-base check implementation only works if the
shift exponent is valid, otherwise it contains undefined behavior
itself.
Make sure we check that exponent is valid before we proceed to
check the base. Make sure that we actually report invalid values
of base or exponent if -fsanitize=shift-base or
-fsanitize=shift-exponent is specified, respectively.
llvm-svn: 231711
simplicity in build systems, silence '-stdlib=libc++' when linking. Even
if we're not linking C++ code per-se, we may be passing this flag so
that when we are linking C++ code we pick up the desired standard
library. While most build systems already provide separate C and C++
compile flags, many conflate link flags. Sadly, CMake is among them
causing this warning in a libc++ selfhost.
llvm-svn: 231559
It's not that easy. If we're only checking -fsanitize=shift-base we
still need to verify that exponent has sane value, otherwise
UBSan-inserted checks for base will contain undefined behavior
themselves.
llvm-svn: 231409