This allows clang-format to align identifiers in consecutive
declarations. This is useful for increasing the readability of the code
in the same way the alignment of assignations is.
The code is a slightly modified version of the consecutive assignment
alignment code. Currently only the identifiers are aligned, and there is
no support of alignment of the pointer star or reference symbol.
The patch also solve the issue of alignments not being possible due to
the ColumnLimit for both the existing AlignConsecutiveAligments and the
new AlignConsecutiveDeclarations.
Patch by Beren Minor, thank you.
Review: http://reviews.llvm.org/D12362
llvm-svn: 248999
recently when we started using direct conversion to model sign
extension. The __v16qi type we use for SSE v16i8 vectors is defined in
terms of 'char' which may or may not be signed! This causes us to
generate pmovsx and pmovzx depending on the setting of -funsigned-char.
This patch just forms an explicitly signed type and uses that to
formulate the sign extension. While this gets the correct behavior
(which we now verify with the enhanced test) this is just the tip of the
ice berg. Now that I know what to look for, I have found errors of this
sort *throughout* our vector code. Fortunately, this is the only
specific place where I know of users actively having their code
miscompiled by Clang due to this, so I'm keeping the fix for those users
minimal and targeted.
I'll be sending a proper email for discussion of how to fix these
systematically, what the implications are, and just how widely broken
this is... From what I can tell, we have never shipped a correct set of
builtin headers for x86 when users rely on -funsigned-char. Oops.
llvm-svn: 248980
Make sure the output filepath supplied to createUniqueFile() in HTMLDiagnostics::ReportDiag() is absolute.
Summary: Make sure the output filepath supplied to createUniqueFile() in HTMLDiagnostics::ReportDiag() is absolute.
Reviewers: rsmith, akyrtzi
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D12774
llvm-svn: 248977
Unqualified templated constructors cannot be friended and our lack of a
diagnostic led to violated invariants. Instead, raise a diagnostic when
processing the friend declaration.
This fixes PR20251.
llvm-svn: 248953
Summary: __nvvm_atom_cas_* returns the old value instead of whether the swap succeeds.
Reviewers: eliben, tra
Subscribers: jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D13306
llvm-svn: 248951
When an Objective-C method implements a protocol requirement, do not
inherit any availability information from the protocol
requirement. Rather, check that the implementation is not less
available than the protocol requirement, as we do when overriding a
method that has availability. Fixes rdar://problem/22734745.
llvm-svn: 248949
Usually, when using LTO with a clang installation newer than the
system's one, there's a libLTO.dylib version mismatch and LTO fails. One
solution to this is to make ld point to the right libLTO.dylib by
changing DYLD_LIBRARY_PATH.
However, ld64 supports specifying the complete path to the desired
libLTO.dylib through the -lto_library option. This commit adds support
for the clang driver to use this option whenever it's capable of finding
a libLTO.dylib in clang's installed library directory. This way, we
don't need to rely on DYLD_LIBRARY_PATH nor get caught by version
mismatches.
Differential Revision: http://reviews.llvm.org/D13117
rdar://problem/7363476
llvm-svn: 248932
We get into this bad state when someone defines a new member function
for a class but forgets to add the declaration to the class body.
Calling the new member function from a member function template of the
class will crash during instantiation.
llvm-svn: 248925
- Remove virtual SC_OpenCLWorkGroupLocal storage type specifier
as it conflicts with static local variables now and prevents
diagnosing static local address space variables correctly.
- Allow static local and global variables (OpenCL2.0 s6.8 and s6.5.1).
- Improve diagnostics of allowed ASes for variables in different scopes:
(i) Global or static local variables have to be in global
or constant ASes (OpenCL1.2 s6.5, OpenCL2.0 s6.5.1);
(ii) Non-kernel function variables can't be declared in local
or constant ASes (OpenCL1.1 s6.5.2 and s6.5.3).
http://reviews.llvm.org/D13105
llvm-svn: 248906
FunctionParmPackExpr actually stores an array of ParmVarDecl* (and
accessors return that). But, the FunctionParmPackExpr::Create()
constructor accepted an array of Decl *s instead.
It was easy for this mismatch to occur without any obvious sign of
something wrong, since both the store and the access used independent
'reinterpet_cast<XX>(this+1)' calls.
llvm-svn: 248905
Applied restrictions from OpenCL v2.0 s6.13.11.8
that mainly disallow operations on atomic types (except for taking their address - &).
The patch is taken from SPIR2.0 provisional branch, contributed by Guy Benyei!
llvm-svn: 248896
This is the clang commit associated with llvm r248887.
This commit changes the interface of the vld[1234], vld[234]lane, and vst[1234],
vst[234]lane ARM neon intrinsics and associates an address space with the
pointer that these intrinsics take. This changes, e.g.,
<2 x i32> @llvm.arm.neon.vld1.v2i32(i8*, i32)
to
<2 x i32> @llvm.arm.neon.vld1.v2i32.p0i8(i8*, i32)
This change ensures that address spaces are fully taken into account in the ARM
target during lowering of interleaved loads and stores.
Differential Revision: http://reviews.llvm.org/D13127
llvm-svn: 248888
specification) to an error. No compiler other than Clang seems to allow this,
and it doesn't seem like a useful thing to accept as an extension in general.
The current behavior was added for PR5957, where the problem was specifically
related to mismatches of the exception specification on the implicitly-declared
global operator new and delete. To retain that workaround, we downgrade the
error to an ExtWarn when the declaration is of a replaceable global allocation
function.
Now that this is an error, stop trying (and failing) to recover from a missing
computed noexcept specification. That recovery didn't work, and led to crashes
in code like the added testcase.
llvm-svn: 248867
r51703 back in 2008 split out all the ObjC Expr subclasses from Expr.h
to a new ExprObjC.h file, but failed to also split the implementation
from Expr.cpp to ExprObjC.cpp. Do so, finally, for readability's sake.
llvm-svn: 248836
This patch corresponds to review:
http://reviews.llvm.org/D13190
Implemented the following interfaces to conform to ELF V2 ABI version 1.1.
vector signed __int128 vec_adde (vector signed __int128, vector signed __int128, vector signed __int128);
vector unsigned __int128 vec_adde (vector unsigned __int128, vector unsigned __int128, vector unsigned __int128);
vector signed __int128 vec_addec (vector signed __int128, vector signed __int128, vector signed __int128);
vector unsigned __int128 vec_addec (vector unsigned __int128, vector unsigned __int128, vector unsigned __int128);
vector signed int vec_addc(vector signed int __a, vector signed int __b);
vector bool char vec_cmpge (vector signed char __a, vector signed char __b);
vector bool char vec_cmpge (vector unsigned char __a, vector unsigned char __b);
vector bool short vec_cmpge (vector signed short __a, vector signed short __b);
vector bool short vec_cmpge (vector unsigned short __a, vector unsigned short __b);
vector bool int vec_cmpge (vector signed int __a, vector signed int __b);
vector bool int vec_cmpge (vector unsigned int __a, vector unsigned int __b);
vector bool char vec_cmple (vector signed char __a, vector signed char __b);
vector bool char vec_cmple (vector unsigned char __a, vector unsigned char __b);
vector bool short vec_cmple (vector signed short __a, vector signed short __b);
vector bool short vec_cmple (vector unsigned short __a, vector unsigned short __b);
vector bool int vec_cmple (vector signed int __a, vector signed int __b);
vector bool int vec_cmple (vector unsigned int __a, vector unsigned int __b);
vector double vec_double (vector signed long long __a);
vector double vec_double (vector unsigned long long __a);
vector bool char vec_eqv(vector bool char __a, vector bool char __b);
vector bool short vec_eqv(vector bool short __a, vector bool short __b);
vector bool int vec_eqv(vector bool int __a, vector bool int __b);
vector bool long long vec_eqv(vector bool long long __a, vector bool long long __b);
vector signed short vec_madd(vector signed short __a, vector signed short __b, vector signed short __c);
vector signed short vec_madd(vector signed short __a, vector unsigned short __b, vector unsigned short __c);
vector signed short vec_madd(vector unsigned short __a, vector signed short __b, vector signed short __c);
vector unsigned short vec_madd(vector unsigned short __a, vector unsigned short __b, vector unsigned short __c);
vector bool long long vec_mergeh(vector bool long long __a, vector bool long long __b);
vector bool long long vec_mergel(vector bool long long __a, vector bool long long __b);
vector bool char vec_nand(vector bool char __a, vector bool char __b);
vector bool short vec_nand(vector bool short __a, vector bool short __b);
vector bool int vec_nand(vector bool int __a, vector bool int __b);
vector bool long long vec_nand(vector bool long long __a, vector bool long long __b);
vector bool char vec_orc(vector bool char __a, vector bool char __b);
vector bool short vec_orc(vector bool short __a, vector bool short __b);
vector bool int vec_orc(vector bool int __a, vector bool int __b);
vector bool long long vec_orc(vector bool long long __a, vector bool long long __b);
vector signed long long vec_sub(vector signed long long __a, vector signed long long __b);
vector signed long long vec_sub(vector bool long long __a, vector signed long long __b);
vector signed long long vec_sub(vector signed long long __a, vector bool long long __b);
vector unsigned long long vec_sub(vector unsigned long long __a, vector unsigned long long __b);
vector unsigned long long vec_sub(vector bool long long __a, vector unsigned long long __b);
vector unsigned long long vec_sub(vector unsigned long long __V2 ABI V1.1
http://ror float vec_sub(vector float __a, vector float __b);
unsigned char vec_extract(vector bool char __a, int __b);
signed short vec_extract(vector signed short __a, int __b);
unsigned short vec_extract(vector bool short __a, int __b);
signed int vec_extract(vector signed int __a, int __b);
unsigned int vec_extract(vector bool int __a, int __b);
signed long long vec_extract(vector signed long long __a, int __b);
unsigned long long vec_extract(vector unsigned long long __a, int __b);
unsigned long long vec_extract(vector bool long long __a, int __b);
double vec_extract(vector double __a, int __b);
vector bool char vec_insert(unsigned char __a, vector bool char __b, int __c);
vector signed short vec_insert(signed short __a, vector signed short __b, int __c);
vector bool short vec_insert(unsigned short __a, vector bool short __b, int __c);
vector signed int vec_insert(signed int __a, vector signed int __b, int __c);
vector bool int vec_insert(unsigned int __a, vector bool int __b, int __c);
vector signed long long vec_insert(signed long long __a, vector signed long long __b, int __c);
vector unsigned long long vec_insert(unsigned long long __a, vector unsigned long long __b, int __c);
vector bool long long vec_insert(unsigned long long __a, vector bool long long __b, int __c);
vector double vec_insert(double __a, vector double __b, int __c);
vector signed long long vec_splats(signed long long __a);
vector unsigned long long vec_splats(unsigned long long __a);
vector signed __int128 vec_splats(signed __int128 __a);
vector unsigned __int128 vec_splats(unsigned __int128 __a);
vector double vec_splats(double __a);
int vec_all_eq(vector double __a, vector double __b);
int vec_all_ge(vector double __a, vector double __b);
int vec_all_gt(vector double __a, vector double __b);
int vec_all_le(vector double __a, vector double __b);
int vec_all_lt(vector double __a, vector double __b);
int vec_all_nan(vector double __a);
int vec_all_ne(vector double __a, vector double __b);
int vec_all_nge(vector double __a, vector double __b);
int vec_all_ngt(vector double __a, vector double __b);
int vec_any_eq(vector double __a, vector double __b);
int vec_any_ge(vector double __a, vector double __b);
int vec_any_gt(vector double __a, vector double __b);
int vec_any_le(vector double __a, vector double __b);
int vec_any_lt(vector double __a, vector double __b);
int vec_any_ne(vector double __a, vector double __b);
vector unsigned char vec_sbox_be (vector unsigned char);
vector unsigned char vec_cipher_be (vector unsigned char, vector unsigned char);
vector unsigned char vec_cipherlast_be (vector unsigned char, vector unsigned char);
vector unsigned char vec_ncipher_be (vector unsigned char, vector unsigned char);
vector unsigned char vec_ncipherlast_be (vector unsigned char, vector unsigned char);
vector unsigned int vec_shasigma_be (vector unsigned int, const int, const int);
vector unsigned long long vec_shasigma_be (vector unsigned long long, const int, const int);
vector unsigned short vec_pmsum_be (vector unsigned char, vector unsigned char);
vector unsigned int vec_pmsum_be (vector unsigned short, vector unsigned short);
vector unsigned long long vec_pmsum_be (vector unsigned int, vector unsigned int);
vector unsigned __int128 vec_pmsum_be (vector unsigned long long, vector unsigned long long);
vector unsigned char vec_gb (vector unsigned char);
vector unsigned long long vec_bperm (vector unsigned __int128 __a, vector unsigned char __b);
Removed the folowing interfaces either because their signatures have changed
in version 1.1 of the ABI or because they were implemented for ELF V2 ABI but
have actually been deprecated in version 1.1.
vector signed char vec_eqv(vector bool char __a, vector signed char __b);
vector signed char vec_eqv(vector signed char __a, vector bool char __b);
vector unsigned char vec_eqv(vector bool char __a, vector unsigned char __b);
vector unsigned char vec_eqv(vector unsigned char __a, vector bool char __b);
vector signed short vec_eqv(vector bool short __a, vector signed short __b);
vector signed short vec_eqv(vector signed short __a, vector bool short __b);
vector unsigned short vec_eqv(vector bool short __a, vector unsigned short __b);
vector unsigned short vec_eqv(vector unsigned short __a, vector bool short __b);
vector signed int vec_eqv(vector bool int __a, vector signed int __b);
vector signed int vec_eqv(vector signed int __a, vector bool int __b);
vector unsigned int vec_eqv(vector bool int __a, vector unsigned int __b);
vector unsigned int vec_eqv(vector unsigned int __a, vector bool int __b);
vector signed long long vec_eqv(vector bool long long __a, vector signed long long __b);
vector signed long long vec_eqv(vector signed long long __a, vector bool long long __b);
vector unsigned long long vec_eqv(vector bool long long __a, vector unsigned long long __b);
vector unsigned long long vec_eqv(vector unsigned long long __a, vector bool long long __b);
vector float vec_eqv(vector bool int __a, vector float __b);
vector float vec_eqv(vector float __a, vector bool int __b);
vector double vec_eqv(vector bool long long __a, vector double __b);
vector double vec_eqv(vector double __a, vector bool long long __b);
vector unsigned short vec_nand(vector bool short __a, vector unsigned short __b);
llvm-svn: 248813
control the individual braces. The existing choices for brace wrapping
are now merely presets for the different flags that get expanded upon
calling the reformat function.
All presets have been chose to keep the existing formatting, so there
shouldn't be any difference in formatting behavior.
Also change the dump_format_style.py to properly document the nested
structs that are used to keep these flags discoverable among all the
configuration flags.
llvm-svn: 248802
Recognize the main module header as well as different #include categories.
This should now mimic the behavior of llvm/utils/sort_includes.py as
well as clang-tools-extra/clang-tidy/llvm/IncludeOrderCheck.cpp very
closely.
llvm-svn: 248782
Description.
If the simd clause is specified, the ordered regions encountered by any thread will use only a single SIMD lane to execute the ordered regions in the order of the loop iterations.
Restrictions.
An ordered construct with the simd clause is the only OpenMP construct that can appear in the simd region.
An ordered directive with ‘simd’ clause is generated as an outlined function and corresponding function call to prevent this part of code from vectorization later in backend.
llvm-svn: 248772
LookupResult should not be copyable, it's not readily copyable and can
only be copied when it's in specific states (in a query state, without
any results, basically). Instead, just extract the /query/ state and
pass that across the copy boundary, then build a new LookupResult on the
other side.
I wonder if a better API (one in which the query state is separate from
the result state - essentialyl making QueryState a first class part of
the Lookup API - pass a QueryState, get a LookupResult, rather than
mutating the LookupResult in place (LookupResult could contain a
QueryState if it's particularly helpful to be able to observe the query
parameters while also examining the result)) might be a good idea here.
Future patches will probably make LookupResult actually non-copyable
(transition the CXXBasePaths to unique_ptr, for example) and hopefully
we'll enable -Wdeprecated in LLVM soon to avoid issues like this.
llvm-svn: 248761
Currently it's 64-bit which will lead to mismatch between host and
device code if we compile for i386.
Differential Revision: http://reviews.llvm.org/D13181
llvm-svn: 248753