Commit Graph

2 Commits

Author SHA1 Message Date
Alex Zinenko 4bb31f7377 ExecutionEngine: provide utils for running CLI-configured LLVM passes
A recent change introduced a possibility to run LLVM IR transformation during
JIT-compilation in the ExecutionEngine.  Provide helper functions that
construct IR transformers given either clang-style optimization levels or a
list passes to run.  The latter wraps the LLVM command line option parser to
parse strings rather than actual command line arguments.  As a result, we can
run either of

    mlir-cpu-runner -O3 input.mlir
    mlir-cpu-runner -some-mlir-pass -llvm-opts="-llvm-pass -other-llvm-pass"

to combine different transformations.  The transformer builder functions are
provided as a separate library that depends on LLVM pass libraries unlike the
main execution engine library.  The library can be used for integrating MLIR
execution engine into external frameworks.

PiperOrigin-RevId: 234173493
2019-03-29 16:29:41 -07:00
Alex Zinenko 5a4403787f Simple CPU runner
This implements a simple CPU runner based on LLVM Orc JIT.  The base
functionality is provided by the ExecutionEngine class that compiles and links
the module, and provides an interface for obtaining function pointers to the
JIT-compiled MLIR functions and for invoking those functions directly.  Since
function pointers need to be casted to the correct pointer type, the
ExecutionEngine wraps LLVM IR functions obtained from MLIR into a helper
function with the common signature `void (void **)` where the single argument
is interpreted as a list of pointers to the actual arguments passed to the
function, eventually followed by a pointer to the result of the function.
Additionally, the ExecutionEngine is set up to resolve library functions to
those available in the current process, enabling support for, e.g., simple C
library calls.

For integration purposes, this also provides a simplistic runtime for memref
descriptors as expected by the LLVM IR code produced by MLIR translation.  In
particular, memrefs are transformed into LLVM structs (can be mapped to C
structs) with a pointer to the data, followed by dynamic sizes.  This
implementation only supports statically-shaped memrefs of type float, but can
be extened if necessary.

Provide a binary for the runner and a test that exercises it.

PiperOrigin-RevId: 230876363
2019-03-29 15:36:08 -07:00