When no device name is specified, default to kaveri
for HSA since SI is not supported and it woud fail.
Default to "tahiti" instead of "SI" since these are
effectively the same, and tahiti is an actual device.
Move default device handling to the TargetMachine
rather than the AMDGPUSubtarget. The module ISA version
is computed from the device name provided with the target
machine, so the attributes printed by the AsmPrinter were
inconsistent with those computed in the subtarget.
Also remove DevName field from subtarget since it's redundant
with getCPU() in the superclass.
llvm-svn: 258901
Summary:
This patch is provided in preparation for removing autoconf on 1/26. The proposal to remove autoconf on 1/26 was discussed on the llvm-dev thread here: http://lists.llvm.org/pipermail/llvm-dev/2016-January/093875.html
"I felt a great disturbance in the [build system], as if millions of [makefiles] suddenly cried out in terror and were suddenly silenced. I fear something [amazing] has happened."
- Obi Wan Kenobi
Reviewers: chandlerc, grosbach, bob.wilson, tstellarAMD, echristo, whitequark
Subscribers: chfast, simoncook, emaste, jholewinski, tberghammer, jfb, danalbert, srhines, arsenm, dschuff, jyknight, dsanders, joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D16471
llvm-svn: 258861
r258781 optimized memcpy/memmove/memcpy so the intrinsic call can return its first argument, but missed the frame index case. Teach it to ignore that case so C code doesn't assert out in these cases.
llvm-svn: 258851
Currently, AnalyzeBranch() fails non-equality comparison between floating points
on X86 (see https://llvm.org/bugs/show_bug.cgi?id=23875). This is because this
function can modify the branch by reversing the conditional jump and removing
unconditional jump if there is a proper fall-through. However, in the case of
non-equality comparison between floating points, this can turn the branch
"unanalyzable". Consider the following case:
jne.BB1
jp.BB1
jmp.BB2
.BB1:
...
.BB2:
...
AnalyzeBranch() will reverse "jp .BB1" to "jnp .BB2" and then "jmp .BB2" will be
removed:
jne.BB1
jnp.BB2
.BB1:
...
.BB2:
...
However, AnalyzeBranch() cannot analyze this branch anymore as there are two
conditional jumps with different targets. This may disable some optimizations
like block-placement: in this case the fall-through behavior is enforced even if
the fall-through block is very cold, which is suboptimal.
Actually this optimization is also done in block-placement pass, which means we
can remove this optimization from AnalyzeBranch(). However, currently
X86::COND_NE_OR_P and X86::COND_NP_OR_E are not reversible: there is no defined
negation conditions for them.
In order to reverse them, this patch defines two new CondCode X86::COND_E_AND_NP
and X86::COND_P_AND_NE. It also defines how to synthesize instructions for them.
Here only the second conditional jump is reversed. This is valid as we only need
them to do this "unconditional jump removal" optimization.
Differential Revision: http://reviews.llvm.org/D11393
llvm-svn: 258847
This patch adds support for trailing zero elements to VZEXT_LOAD loads (and checks that no zero elts occur within the consecutive load).
It also generalizes the 64-bit VZEXT_LOAD load matching to work for loads other than 2x32-bit loads.
After this patch it will also be easier to add support for other basic load patterns like 32-bit VZEXT_LOAD loads, PMOVZX and subvector load insertion.
Differential Revision: http://reviews.llvm.org/D16217
llvm-svn: 258798
I did my best to try to update all the uses in tests that
just happened to use the old ones to the newer intrinsics.
I'm not sure I got all of the immediate operand conversions
correct, since the value seems to have been ignored by the
old pattern but I don't think it really matters.
llvm-svn: 258787
Some of the special intrinsics now that now correspond to a instruction
also have special setting of some registers, e.g. llvm.SI.sendmsg sets
m0 as well as use s_sendmsg. Using these explicit register intrinsics
may be a better option.
Reading the exec mask and others may be useful for debugging. For this
I'm not sure this is entirely correct because we would want this to
be convergent, although it's possible this is already treated
sufficently conservatively.
llvm-svn: 258785
These calls return their first argument, but because LLVM uses an intrinsic
with a void return type, they can't use the returned attribute. Generalize
the store results pass to optimize these calls too.
llvm-svn: 258781
For historic reasons, the behavior of .align differs between targets.
Fortunately, there are alternatives, .p2align and .balign, which make the
interpretation of the parameter explicit, and which behave consistently across
targets.
This patch teaches MC to use .p2align instead of .align, so that people reading
code for multiple architectures don't have to remember which way each platform
does its .align directive.
Differential Revision: http://reviews.llvm.org/D16549
llvm-svn: 258750
There's a special case in EmitLoweredSelect() that produces an improved
lowering for cmov(cmov) patterns. However this special lowering is
currently broken if the inner cmov has multiple users so this patch
stops using it in this case.
If you wonder why this wasn't fixed by continuing to use the special
lowering and inserting a 2nd PHI for the inner cmov: I believe this
would incur additional copies/register pressure so the special lowering
does not improve upon the normal one anymore in this case.
This fixes http://llvm.org/PR26256 (= rdar://24329747)
llvm-svn: 258729
Instructions can be DCE'd after the RegStackify pass. If the instruction which
would be the pop for what would be a push is removed, don't use a push.
llvm-svn: 258694
When generating calls to memcpy, memmove, and memset, use void* as the return
type rather than void, to match the standard signatures for these functions.
This has no practical effect for most targets, since the return values of
these calls aren't being used anyway, and most calling conventions tolerate
this kind of mismatch. However, this change will help support future
optimizations to utilize the return value to avoid holding the argument
value live across a call.
llvm-svn: 258691
This patch was originally committed as r257885, but was reverted due to windows
failures. The cause of these failures has been fixed under r258677, hence
re-committing the original patch.
llvm-svn: 258683
This patch was originally committed as r257884, but was reverted due to windows
failures. The cause of these failures has been fixed under r258677, hence
re-committing the original patch.
llvm-svn: 258682
VPMADD52LUQ - Packed Multiply of Unsigned 52-bit Integers and Add the Low 52-bit Products to Qword Accumulators
VPMADD52HUQ - Packed Multiply of Unsigned 52-bit Unsigned Integers and Add High 52-bit Products to 64-bit Accumulators
Differential Revision: http://reviews.llvm.org/D16407
llvm-svn: 258680
Use AVX1 FP instructions (vmaskmovps/pd) in place of the AVX2 int instructions (vpmaskmovd/q).
Differential Revision: http://reviews.llvm.org/D16528
llvm-svn: 258675
Changes in X86.td:
I set features of Intel processors in incremental form: IVB = SNB + X HSW = IVB + X ..
I added Skylake client processor and defined it's features
FeatureADX was missing on KNL
Added some new features to appropriate processors SMAP, IFMA, PREFETCHWT1, VMFUNC and others
Differential Revision: http://reviews.llvm.org/D16357
llvm-svn: 258659
A cleanup can have paths which unwind or end up in unreachable.
If there is an unreachable path *and* a path which unwinds to caller,
we would mistakenly inject an unwind path to a catchswitch on the
unreachable path. This results in a verifier assertion firing because
the cleanup unwinds to two different places: to the caller and to the
catchswitch.
This occured because we used getCleanupRetUnwindDest to determine if the
cleanuppad had no cleanuprets.
This is incorrect, getCleanupRetUnwindDest returns null for cleanuprets
which unwind to caller.
llvm-svn: 258651
Summary:
Previously, we would just output "foo = bar" in the assembly, and then
ptxas would choke. Now we die before emitting any invalid code.
Reviewers: echristo
Subscribers: jholewinski, llvm-commits, jhen, tra
Differential Revision: http://reviews.llvm.org/D16490
llvm-svn: 258638
For the moment, this file takes way too long to run (see inline comments), but
that should be a temporary problem. The fact that the compile time is so slow
for a target that doesn't support maskmov may be a bug worth investigating too.
llvm-svn: 258629
If the INSERTPS zeroes out all the referenced elements from either of the 2 input vectors (and the input is not already UNDEF), then set that input to UNDEF to reduce dependencies.
llvm-svn: 258622
Some of the conditions necessary to produce ccmp sequences were only
checked in recursive calls to emitConjunctionDisjunctionTree() after
some of the earlier expressions were already built. Move all checks over
to isConjunctionDisjunctionTree() so they are all checked before we
start emitting instructions.
Also rename some variable to better reflect their usage.
llvm-svn: 258605
Cleanups in C++ are a little weird. They are only guaranteed to be
reliably executed if, and only if, there is a viable catch handler which
can handle the exception.
This means that reachability of a cleanup is lexically determined by it
being nested with a try-block which unwinds to a catch. It is *cannot*
be reasoned about by examining the control flow edges leaving a cleanup.
Usually this is not a problem. It becomes a problem when there are *no*
edges out of a cleanup because we believed that code post-dominated by
the cleanup is dead. In LLVM's case, this code is what informs the
personality routine about the presence of a suitable catch handler.
However, the lack of edges to that catch handler makes the handler
become unreachable which causes us to remove it. By removing the
handler, the cleanup becomes unreachable.
Instead, inject a catch-all handler with every cleanup that has no
unwind edges. This will allow us to properly unwind the stack.
This fixes PR25997.
llvm-svn: 258580
The intrinsic target prefix should match the target name
as it appears in the triple.
This is not yet complete, but gets most of the important ones.
llvm.AMDGPU.* intrinsics used by mesa and libclc are still handled
for compatability for now.
llvm-svn: 258557
The promote alloca pass didn't handle these intrinsics and crashed.
These intrinsics should accept any address space, but for now just
erase them to avoid breaking.
llvm-svn: 258537
The current behavior is incorrect, as the two CCs returned by
changeFPCCToAArch64CC, intended to be OR'ed, are instead used
in an AND ccmp chain.
Consider:
define i32 @t(float %a, float %b, float %c, float %d, i32 %e, i32 %f) {
%cc1 = fcmp one float %a, %b
%cc2 = fcmp olt float %c, %d
%and = and i1 %cc1, %cc2
%r = select i1 %and, i32 %e, i32 %f
ret i32 %r
}
Assuming (%a < %b) and (%c < %d); we used to do:
fcmp s0, s1 # nzcv <- 1000
orr w8, wzr, #0x1 # w8 <- 1
csel w9, w8, wzr, mi # w9 <- 1
csel w8, w8, w9, gt # w8 <- 1
fcmp s2, s3 # nzcv <- 1000
cset w9, mi # w9 <- 1
tst w8, w9 # (w8 & w9) == 1, so: nzcv <- 0000
csel w0, w0, w1, ne # w0 <- w0
We now do:
fcmp s2, s3 # nzcv <- 1000
fccmp s0, s1, #0, mi # mi, so: nzcv <- 1000
fccmp s0, s1, #8, le # !le, so: nzcv <- 1000
csel w0, w0, w1, pl # !pl, so: w0 <- w1
In other words, we transformed:
(c < d) && ((a < b) || (a > b))
into:
(c < d) && (a u>= b) && (a u<= b)
whereas, per De Morgan's, we wanted:
(c < d) && !((a u>= b) && (a u<= b))
Note that this problem doesn't occur in the test-suite.
changeFPCCToAArch64CC produces disjunct CCs; here, one -> mi/gt.
We can't represent that in the fccmp chain; it can't express
arbitrary OR sequences, as one comment explains:
In general we can create code for arbitrary "... (and (and A B) C)"
sequences. We can also implement some "or" expressions, because
"(or A B)" is equivalent to "not (and (not A) (not B))" and we can
implement some negation operations. [...] However there is no way
to negate the result of a partial sequence.
Instead, introduce changeFPCCToANDAArch64CC, which produces the
conjunct cond codes:
- (a one b)
== ((a olt b) || (a ogt b))
== ((a ord b) && (a une b))
- (a ueq b)
== ((a uno b) || (a oeq b))
== ((a ule b) && (a uge b))
Note that, at first, one might think that, when PushNegate is true,
we should use the disjunct CCs, in effect doing:
(a || b)
= !(!a && !(b))
= !(!a && !(b1 || b2)) <- changeFPCCToAArch64CC(b, b1, b2)
= !(!a && !b1 && !b2)
However, we can take advantage of the fact that the CC is already
negated, which lets us avoid special-casing PushNegate and doing
the simpler to reason about:
(a || b)
= !(!a && (!b))
= !(!a && (b1 && b2)) <- changeFPCCToANDAArch64CC(!b, b1, b2)
= !(!a && b1 && b2)
This makes both emitConditionalCompare cases behave identically,
and produces correct ccmp sequences for the 2-CC fcmps.
llvm-svn: 258533
This reapplies r258296 and r258366, and also fixes an existing bug in
SelectionDAG.cpp's isMemSrcFromString, neglecting to account for the
offset in a GlobalAddressSDNode, which is uncovered by those patches.
llvm-svn: 258482
Summary:
SETCC with f16 vectors has OperationAction set to Expand but still gets
lowered to FCM* intrinsics based on its result type. This patch skips
lowering of VSETCC if the operand is an f16 vector.
v4 and v8 tests included.
Reviewers: ab, jmolloy
Subscribers: srhines, llvm-commits
Differential Revision: http://reviews.llvm.org/D15361
llvm-svn: 258471
This reverts r258296 and the follow up r258366. With this change, we
miscompiled the following program on Windows:
#include <string>
#include <iostream>
static const char kData[] = "asdf jkl;";
int main() {
std::string s(kData + 3, sizeof(kData) - 3);
std::cout << s << '\n';
}
llvm-svn: 258465
The X86 musttail implementation finds register parameters to forward by
running the calling convention algorithm until a non-register location
is returned. However, assigning a vector memory location has the side
effect of increasing the function's stack alignment. We shouldn't
increase the stack alignment when we are only looking for register
parameters, so this change conditionalizes it.
llvm-svn: 258442
Better handling of the annoying pshuflw/pshufhw ops which only shuffle lower/upper halves of a vector.
Added vXi16 unary shuffle support for cases where i16 elements (from the same half of the source) are being splatted to the whole of one of the halves. This avoids the general lowering case which must shuffle the 32-bit elements first - meaning that we used to end up with unnecessary duplicate pshuflw/pshufhw shuffles.
Note this has the side effect of a lot of SSSE3 test cases no longer needing to use PSHUFB, as it falls below the 3 op combine threshold for when PSHUFB is typically worth it. I've raised PR26183 to discuss if the threshold should be changed and whether we need to make it more specific to the target CPU.
Differential Revision: http://reviews.llvm.org/D14901
llvm-svn: 258440
Summary:
While working on uniform branching, I've hit a few cases where we emit
i1 SETCC operations.
Reviewers: arsenm
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D16233
llvm-svn: 258352
If converter was somewhat careless about "diamond" cases, where there
was no join block, or in other words, where the true/false blocks did
not have analyzable branches. In such cases, it was possible for it to
remove (needed) branches, resulting in a loss of entire basic blocks.
Differential Revision: http://reviews.llvm.org/D16156
llvm-svn: 258310
SelectionDAG previously missed opportunities to fold constants into
GlobalAddresses in several areas. For example, given `(add (add GA, c1), y)`, it
would often reassociate to `(add (add GA, y), c1)`, missing the opportunity to
create `(add GA+c, y)`. This isn't often visible on targets such as X86 which
effectively reassociate adds in their complex address-mode folding logic,
however it is currently visible on WebAssembly since it currently has very
simple address mode folding code that doesn't reassociate anything.
This patch fixes this by making SelectionDAG fold offsets into GlobalAddresses
at the same times that it folds constants together, so that it doesn't miss any
opportunities to perform such folding.
Differential Revision: http://reviews.llvm.org/D16090
llvm-svn: 258296
Summary:
This teaches MachineSink to not sink instructions that might break the
implicit null check optimization that runs later. This should not
affect frontends that do not use implicit null checks.
Reviewers: aadg, reames, hfinkel, atrick
Subscribers: majnemer, llvm-commits
Differential Revision: http://reviews.llvm.org/D14632
llvm-svn: 258254
calling convention.
The implementation of the related callbacks in the x86 backend for such
functions are not ready to deal with a prologue block that is not the entry
block of the function.
This fixes PR26107, but the longer term solution would be to fix those callbacks.
llvm-svn: 258221
As vector shuffles can only reference two inputs many (V)INSERTPS patterns end up being split over two targets shuffles.
This patch adds combines to attempt to combine (V)INSERTPS nodes with input/output nodes that are just zeroing out these additional vector elements.
Differential Revision: http://reviews.llvm.org/D16072
llvm-svn: 258205
Teach the register stackifier to rematerialize constants that have multiple
uses instead of leaving them in registers. In the WebAssembly encoding, it's
the same code size to materialize most constants as it is to read a value
from a register.
llvm-svn: 258142
This breaks the tests that were meant for testing
64-bit inline immediates, so move those to shl where
they won't be broken up.
This should be repeated for the other related bit ops.
llvm-svn: 258095
AVX2 can only broadcast from the zero'th element of a vector, but if the broadcastable element is the zero'th element of a 128-bit subvector its advantageous to extract the subvector, broadcast from that and avoid the loading of shuffle mask data that would be needed for VPERMPS/VPERMD. The only exception being when the source type is 4f64 or 4i64 which can directly use the immediate shuffle VPERMPD/VPERMQ directly.
Differential Revision: http://reviews.llvm.org/D16050
llvm-svn: 258081
Added support for the extraction of the upper 128-bit subvectors for lower/upper half undef shuffles if it would reduce the number of extractions/insertions or avoid loads of AVX2 permps/permd shuffle masks.
Minor follow up to D15477.
llvm-svn: 258000
%RBP can't be handled explicitly. We generate the following code:
pushq %rbp
movq %rsp, %rbp
...
movq %rbx, (%rbp) ## 8-byte Spill
where %rbp will be overwritten by the spilled value.
The fix is to let PEI handle %RBP.
PR26136
llvm-svn: 257997
WebAssembly's stack will never be executable by default, so it isn't
necessary to declare .note.GNU-stack sections to request a non-executable
stack.
Differential Revision: http://reviews.llvm.org/D15969
llvm-svn: 257962
In the optimizer (GVN etc.) when eliminating redundant nodes with different
flags, the flags are ignored for the purposes of testing for congruence, and
then intersected for the purposes of producing a result that supports the union
of all the uses. This commit makes SelectionDAG's CSE do the same thing,
allowing it to CSE nodes in more cases. This fixes PR26063.
Differential Revision: http://reviews.llvm.org/D15957
llvm-svn: 257940
When we have a single basic block, the explicit copy-back instructions should
be inserted right before the terminator. Before this fix, they were wrongly
placed at the beginning of the basic block.
PR26136
llvm-svn: 257930
When we have a single basic block, the explicit copy-back instructions should
be inserted right before the terminator. Before this fix, they were wrongly
placed at the beginning of the basic block.
I will commit fixes to other platforms as well.
PR26136
llvm-svn: 257929
When we have a single basic block, the explicit copy-back instructions should
be inserted right before the terminator. Before this fix, they were wrongly
placed at the beginning of the basic block.
I will commit fixes to other platforms as well.
PR26136
llvm-svn: 257925
# The first commit's message is:
Revert "[ARM] Add DSP build attribute and extension targeting"
This reverts commit b11cc50c0b4a7c8cdb628abc50b7dc226ff583dc.
# This is the 2nd commit message:
Revert "[ARM] Add new system registers to ARMv8-M Baseline/Mainline"
This reverts commit 837d08454e3e5beb8581951ac26b22fa07df3cd5.
llvm-svn: 257916
platforms.
With ELF, the alignment of a global variable in a shared library will
get copied into an executables linked against it, if the executable even
accesss the variable. So, it's not possible to implicitly increase
alignment based on access patterns, or you'll break existing binaries.
This happened to affect libc++'s std::cout symbol, for example. See
thread: http://thread.gmane.org/gmane.comp.compilers.clang.devel/45311
(This is a re-commit of r257719, without the bug reported in
PR26144. I've tweaked the code to not assert-fail in
enforceKnownAlignment when computeKnownBits doesn't recurse far enough
to find the underlying Alloca/GlobalObject value.)
Differential Revision: http://reviews.llvm.org/D16145
llvm-svn: 257902
I originally reapplied this in 257550, but had to revert again due to bot
breakage. The only change in this version is to allow either the TypeSize
or the TypeAllocSize of the variable to be the one represented in debug info
(hopefully in the future we can figure out how to encode the difference).
Additionally, several bot failures following r257550, were due to
optimizer bugs now fixed in r257787 and r257795.
r257550 commit message was:
```
The follow extra changes were made to test cases:
Manually making the variable be the actual type instead of a pointer
to avoid pointer-size differences in generic code:
LLVM :: DebugInfo/Generic/2010-03-24-MemberFn.ll
LLVM :: DebugInfo/Generic/2010-04-06-NestedFnDbgInfo.ll
LLVM :: DebugInfo/Generic/2010-05-03-DisableFramePtr.ll
LLVM :: DebugInfo/Generic/varargs.ll
Delete sizing information from debug info for the same reason
(but the presence of the pointer was important to the test case):
LLVM :: DebugInfo/Generic/restrict.ll
LLVM :: DebugInfo/Generic/tu-composite.ll
LLVM :: Linker/type-unique-type-array-a.ll
LLVM :: Linker/type-unique-simple2.ll
Fixing an incorrect DW_OP_deref
LLVM :: DebugInfo/Generic/2010-05-03-OriginDIE.ll
Fixing a missing DW_OP_deref
LLVM :: DebugInfo/Generic/incorrect-variable-debugloc.ll
Additionally, clang should no longer complain during bootstrap should no
longer happen after r257534.
The original commit message was:
``
Summary:
Teach the Verifier to make sure that the storage size given to llvm.dbg.declare
or the value size given to llvm.dbg.value agree with what is declared in
DebugInfo. This is implicitly assumed in a number of passes (e.g. in SROA).
Additionally this catches a number of common mistakes, such as passing a
pointer when a value was intended or vice versa.
One complication comes from stack coloring which modifies the original IR when
it merges allocas in order to make sure that if AA falls back to the IR it gets
the correct result. However, given this new invariant, indiscriminately
replacing one alloca by a different (differently sized one) is no longer valid.
Fix this by just undefing out any use of the alloca in a dbg.declare in this
case.
Additionally, I had to fix a number of test cases. Of particular note:
- I regenerated dbg-changes-codegen-branch-folding.ll from the given source as
it was affected by the bug fixed in r256077
- two-cus-from-same-file.ll was changed to avoid having a variable-typed debug
variable as that would depend on the target, even though this test is
supposed to be generic
- I had to manually declared size/align for reference type. See also the
discussion for D14275/r253186.
- fpstack-debuginstr-kill.ll required changing `double` to `long double`
- most others were just a question of adding OP_deref
``
```
llvm-svn: 257850
Summary:
This pass may modify the Cmp operands. However, the flag reg may be used by both the branch and CSEL.
Modifying CMP will have side effect on CSEL.
Reviewers: t.p.northover
Subscribers: llvm-commits, aemerson, rengolin
Differential Revision: http://reviews.llvm.org/D16147
llvm-svn: 257844
Since r230276, we support an improved legalization for f64->f16,
which goes through a temporary f32, improving codegen when
f32->f16 is legal but not f64->f16. This requires unsafe-fp-math.
However, that legalization assumed that the second step, producing
a pseudo-softened f16, had type i16. That's not true on targets
with illegal i16, such as ARM.
Use the initial f64->f16 result type instead.
llvm-svn: 257794
We rely on HasOpaqueSPAdjustment not changing after we've calculated
things based on it. Things like whether or not we can use 'rep;movs' to
copy bytes around, that sort of thing. If it changes, invariants in the
backend will quietly break. This situation arose when we had a call to
memcpy *and* a COPY of the FLAGS register where we would attempt to
reference local variables using %esi, a register that was clobbered by
the 'rep;movs'.
This fixes PR26124.
llvm-svn: 257730
platforms.
With ELF, the alignment of a global variable in a shared library will
get copied into an executables linked against it, if the executable even
accesss the variable. So, it's not possible to implicitly increase
alignment based on access patterns, or you'll break existing binaries.
This happened to affect libc++'s std::cout symbol, for example. See
thread: http://thread.gmane.org/gmane.comp.compilers.clang.devel/45311
llvm-svn: 257719
Previous implementation in http://reviews.llvm.org/D10522
created external references to __emutls_v.* variables.
Such references are inaccurate and cannot be handled by
all linkers, e.g. Android dynamic and gold linkers for aarch64.
Now a new LowerEmuTLS pass to go through all global variables,
and add emutls_v.* and emutls_t.* variables.
These __emutls* variables have the same linkage and
visibility as the associated user defined TLS variable.
Also removed old code that dump __emutls* variables in AsmPrinter.cpp,
and updated TLS unit tests.
Differential Revision: http://reviews.llvm.org/D15300
llvm-svn: 257718
Summary:
It is off by default, but can be used
with --misched=si
Patch by: Axel Davy
Reviewers: arsenm, tstellarAMD, nhaehnle
Subscribers: nhaehnle, solenskiner, arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D11885
llvm-svn: 257609
The global entry point prologue currently assumes that the TOC
associated with a function is less than 2GB away from the function
entry point. This is always true when using the medium or small
code model, but may not be the case when using the large code model.
This patch adds a new variant of the ELFv2 global entry point prologue
that lifts the 2GB restriction when building with -mcmodel=large.
This works by emitting a quadword containing the distance from the
function entry point to its associated TOC immediately before the
entry point, and then using a prologue like:
ld r2,-8(r12)
add r2,r2,r12
Since creation of the entry point prologue is now split across two
separate routines (PPCLinuxAsmPrinter::EmitFunctionEntryLabel emits
the data word, PPCLinuxAsmPrinter::EmitFunctionBodyStart the prolog
code), I've switched to using named labels instead of just temporaries
to indicate the locations of the global and local entry points and the
new TOC offset data word.
These names are provided by new routines in PPCFunctionInfo modeled
after the existing PPCFunctionInfo::getPICOffsetSymbol.
Note that a corresponding change was committed to GCC here:
https://gcc.gnu.org/ml/gcc-patches/2015-12/msg00355.html
Reviewers: hfinkel
Differential Revision: http://reviews.llvm.org/D15500
llvm-svn: 257597
Make x86 OptimizeLEAs pass remove LEA instruction if there is another LEA
(in the same basic block) which calculates address differing only be a
displacement. Works only for -Oz.
Differential Revision: http://reviews.llvm.org/D13295
llvm-svn: 257589
AnalyzeBranch on X86 (and, previously, SPARC, which implementation was
copied from X86) tries to modify the branches based on block
layout (e.g. checking isLayoutSuccessor), when AllowModify is true.
The rest of the architectures leave that up to the caller, which can
call InsertBranch, RemoveBranch, and ReverseBranchCondition as
appropriate. That appears to be the preferred way to do it nowadays.
This commit makes SPARC like the rest: replaces AnalyzeBranch with an
implementation cribbed from AArch64, and adds a ReverseBranchCondition
implementation.
Additionally, a test-case has been added (also cribbed from AArch64)
demonstrating that redundant branch sequences no longer get emitted.
E.g., it used to emit code like this:
bne .LBB1_2
nop
ba .LBB1_1
nop
.LBB1_2:
And now emits:
cmp %i0, 42
be .LBB1_1
nop
llvm-svn: 257572
The version numbers of the darwin kernel are different from the version
numbers of OS X, so we need adjustments if we had "*-*-darwin" triples.
Use the existing utility functions in TargetTriple for this.
Fixes rdar://22056966
Differential Revision: http://reviews.llvm.org/D14601
llvm-svn: 257555
The follow extra changes were made to test cases:
Manually making the variable be the actual type instead of a pointer
to avoid pointer-size differences in generic code:
LLVM :: DebugInfo/Generic/2010-03-24-MemberFn.ll
LLVM :: DebugInfo/Generic/2010-04-06-NestedFnDbgInfo.ll
LLVM :: DebugInfo/Generic/2010-05-03-DisableFramePtr.ll
LLVM :: DebugInfo/Generic/varargs.ll
Delete sizing information from debug info for the same reason
(but the presence of the pointer was important to the test case):
LLVM :: DebugInfo/Generic/restrict.ll
LLVM :: DebugInfo/Generic/tu-composite.ll
LLVM :: Linker/type-unique-type-array-a.ll
LLVM :: Linker/type-unique-simple2.ll
Fixing an incorrect DW_OP_deref
LLVM :: DebugInfo/Generic/2010-05-03-OriginDIE.ll
Fixing a missing DW_OP_deref
LLVM :: DebugInfo/Generic/incorrect-variable-debugloc.ll
Additionally, clang should no longer complain during bootstrap should no
longer happen after r257534.
The original commit message was:
```
Summary:
Teach the Verifier to make sure that the storage size given to llvm.dbg.declare
or the value size given to llvm.dbg.value agree with what is declared in
DebugInfo. This is implicitly assumed in a number of passes (e.g. in SROA).
Additionally this catches a number of common mistakes, such as passing a
pointer when a value was intended or vice versa.
One complication comes from stack coloring which modifies the original IR when
it merges allocas in order to make sure that if AA falls back to the IR it gets
the correct result. However, given this new invariant, indiscriminately
replacing one alloca by a different (differently sized one) is no longer valid.
Fix this by just undefing out any use of the alloca in a dbg.declare in this
case.
Additionally, I had to fix a number of test cases. Of particular note:
- I regenerated dbg-changes-codegen-branch-folding.ll from the given source as
it was affected by the bug fixed in r256077
- two-cus-from-same-file.ll was changed to avoid having a variable-typed debug
variable as that would depend on the target, even though this test is
supposed to be generic
- I had to manually declared size/align for reference type. See also the
discussion for D14275/r253186.
- fpstack-debuginstr-kill.ll required changing `double` to `long double`
- most others were just a question of adding OP_deref
```
llvm-svn: 257550
Summary:
BFC instructions are available in ARMv6T2 and above.
Reviewers: t.p.northover
Subscribers: aemerson
Differential Revision: http://reviews.llvm.org/D16076
llvm-svn: 257546
VMOVs are not strictly speaking cheap, but they are as expensive as a vector
copy (VORR), so we should prefer rematerialization over splitting when it
applies.
rdar://problem/23754176
llvm-svn: 257545
Only non-weighted predicates were handled in PPCInstrInfo::insertSelect. Handle
the weighted predicates as well.
This latent bug was triggered by r255398, because it added use of the
branch-weighted predicates.
While here, switch over an enum instead of an int to get the compiler to enforce
totality in the future.
llvm-svn: 257518
A request has been made to the official registry, but an official value is
not yet available. This patch uses a temporary value in order to support
development. When an official value is recieved, the value of EM_WEBASSEMBLY
will be updated.
llvm-svn: 257517
This patch changes the way labels are referenced. Instead of referencing the
basic-block label name (eg. .LBB0_0), instructions now just have an immediate
which indicates the depth in the control-flow stack to find a label to jump to.
This makes them much closer to what we expect to have in the binary encoding,
and avoids the problem of basic-block label names not being explicit in the
binary encoding.
Also, it terminates blocks and loops with end_block and end_loop instructions,
rather than basic-block label names, for similar reasons.
This will also fix problems where two constructs appear to have the same label,
because we no longer explicitly use labels, so consumers that need labels will
presumably create their own labels, and presumably they won't reuse labels
when they do.
This patch does make the code a little more awkward to read; as a partial
mitigation, this patch also introduces comments showing where the labels are,
and comments on each branch showing where it's branching to.
llvm-svn: 257505
Summary: The result register is the second operand as per the other mt* instructions.
Reviewers: vkalintiris
Subscribers: llvm-commits, dsanders
Differential Revision: http://reviews.llvm.org/D15993
llvm-svn: 257478
(64 to 128-bit) matches against the pattern fragment 'vzmovl_v2i64'
(a zero-extended 64-bit load).
However, a change in r248784 teaches the instruction combiner that only
the lower 64 bits of the input to a 128-bit vcvtph2ps are used. This means
the instruction combiner will ordinarily optimize away the upper 64-bit
insertelement instruction in the zero-extension and so we no longer select
the memory-register form. To fix this a new pattern has been added.
Differential Revision: http://reviews.llvm.org/D16067
llvm-svn: 257470
Currently WebAssembly has two kinds of relocations; data addresses and
function addresses. This adds ELF relocations for them, as well as an
MC symbol kind to indicate which type of relocation is needed.
llvm-svn: 257416
The hardware instruction's output on 0 is -1 rather than 32.
Eliminate a test and select to -1. This removes an extra instruction
from the compatability function with HSAIL's firstbit instruction.
llvm-svn: 257352
Summary:
It actually takes an offset into the current PC-region.
This fixes the 'expr' command in lldb.
Reviewers: vkalintiris, jaydeep, bhushan
Subscribers: dsanders, llvm-commits
Differential Revision: http://reviews.llvm.org/D16054
llvm-svn: 257339
This is a recommit of r257253 which was reverted in r257270.
Previous testcase can make failure on some targets due to using opt with O3 option.
Original Summary:
Merge MBBICommon and MBBI's MMOs.
Differential Revision: http://reviews.llvm.org/D15990
llvm-svn: 257317
Summary:
Funclet-based EH personalities/tables likely can't handle these, and they
can't be generated at source, so make them officially illegal in IR as
well.
Reviewers: andrew.w.kaylor, rnk, majnemer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D15963
llvm-svn: 257274
Summary:
A funclet EH pad may be exited by an unwind edge, which may be a
cleanupret exiting its cleanuppad, an invoke exiting a funclet, or an
unwind out of a nested funclet transitively exiting its parent. Funclet
EH personalities require all such exceptional exits from a given funclet to
have the same unwind destination, and EH preparation / state numbering /
table generation implicitly depends on this. Formalize it as a rule of
the IR in the LangRef and verifier.
Reviewers: rnk, majnemer, andrew.w.kaylor
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D15962
llvm-svn: 257273
AVX1 v8i32/v4i64 shuffles are bitcasted to v8f32/v4f64, this patch peeks through any bitcast to check for a load node to allow broadcasts to occur.
This is a re-commit of r257055 after r257264 fixed 32-bit broadcast loads of i64 scalars.
llvm-svn: 257266
Summary:
r255334 matches bit-reverse pattern in InstCombine and generates calls to Instrinsic::bitreverse.
RBIT instruction is only available for ARMv6t2 and above. This patch has the intrinsic expanded during legalization for ARMv4 and ARMv5.
Patch by Z. Zheng <zhaoshiz@codeaurora.org>
Reviewers: apazos, jmolloy, weimingz
Subscribers: aemerson, rengolin, llvm-commits
Differential Revision: http://reviews.llvm.org/D15932
llvm-svn: 257188
Summary:
During legalization if i16, do not ASSERTZEXT the result of FP_TO_FP16.
Directly return an FP_TO_FP16 node with return type as the
promote-to-type of i16.
This patch also removes extraneous length check. This legalization
should be valid even if integer and float types are of different
lengths.
This patch breaks a hard-float test for fp16 args. The test is changed
to allow a vmov to zero-out the top bits, and also ensure that the
return value is in an FP register.
Reviewers: ab, jmolloy
Subscribers: srhines, llvm-commits
Differential Revision: http://reviews.llvm.org/D15438
llvm-svn: 257184
StackColoring rewrites the frame indicies of operations involving
allocas if it can find that the life time of two objects do not overlap.
MSVC EH needs to be kept aware of this if happens in the event that a
catch object has moved around. However, we represent the non-existance
of a catch object with a sentinel frame index (INT_MAX). This sentinel
also happens to be the EmptyKey of the SlotRemap DenseMap. Testing for
whether or not we need to translate the frame index fails in this case
because we call the count method on the DenseMap with the EmptyKey,
leading to assertions. Instead, check if it is our sentinel value
before trying to look into the DenseMap.
This fixes PR26073.
llvm-svn: 257182
Windows EH keeping track of which frame index corresponds to a catchpad
in order to inform the runtime where the catch parameter should be
initialized. LLVM's optimizations are able to prove that the memory
used by the catch parameter can be reused with another memory
optimization, changing it's frame index.
We need to keep WinEHFuncInfo up to date with respect to this or we will
miscompile/assert.
This fixes PR26069.
llvm-svn: 257158
This is a fix for bug http://llvm.org/bugs/show_bug.cgi?id=25839.
For a PIC TLS variable access in a function, prologue (mflr followed by std and
stdu) gets scheduled after a tls_get_addr call. tls_get_addr messed up LR but
no one saves/restores it.
Also added a test for save/restore clobbered registers during calling __tls_get_addr.
Patch by Tim Shen
llvm-svn: 257137
.zero is confusing when used with two arguments. Documentation:
This directive emits SIZE 0-valued bytes. SIZE must be an absolute
expression. This directive is actually an alias for the '.skip'
directive so in can take an optional second argument of the value to
store in the bytes instead of zero. Using '.zero' in this way would be
confusing however.
Ref: https://sourceware.org/bugzilla/show_bug.cgi?id=18353
Hexagon and Sparc do the same, and it's all the same to WebAssembly so
let's pick the less confusing of the two.
llvm-svn: 257111
Summary:
Teach the Verifier to make sure that the storage size given to llvm.dbg.declare
or the value size given to llvm.dbg.value agree with what is declared in
DebugInfo. This is implicitly assumed in a number of passes (e.g. in SROA).
Additionally this catches a number of common mistakes, such as passing a
pointer when a value was intended or vice versa.
One complication comes from stack coloring which modifies the original IR when
it merges allocas in order to make sure that if AA falls back to the IR it gets
the correct result. However, given this new invariant, indiscriminately
replacing one alloca by a different (differently sized one) is no longer valid.
Fix this by just undefing out any use of the alloca in a dbg.declare in this
case.
Additionally, I had to fix a number of test cases. Of particular note:
- I regenerated dbg-changes-codegen-branch-folding.ll from the given source as
it was affected by the bug fixed in r256077
- two-cus-from-same-file.ll was changed to avoid having a variable-typed debug
variable as that would depend on the target, even though this test is
supposed to be generic
- I had to manually declared size/align for reference type. See also the
discussion for D14275/r253186.
- fpstack-debuginstr-kill.ll required changing `double` to `long double`
- most others were just a question of adding OP_deref
Reviewers: aprantl
Differential Revision: http://reviews.llvm.org/D14276
llvm-svn: 257105