This leads to a statistically significant improvement when using -hwasan-instrument-stack=0: https://bit.ly/3AZUIKI.
When enabling stack instrumentation, the data appears gets better but not statistically significantly so. This is consistent
with the very moderate improvements I have seen for stack safety otherwise, so I expect it to improve when the underlying
issue of that is resolved.
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D108457
Currently, opaque pointers are supported in two forms: The
-force-opaque-pointers mode, where all pointers are opaque and
typed pointers do not exist. And as a simple ptr type that can
coexist with typed pointers.
This patch removes support for the mixed mode. You either get
typed pointers, or you get opaque pointers, but not both. In the
(current) default mode, using ptr is forbidden. In -opaque-pointers
mode, all pointers are opaque.
The motivation here is that the mixed mode introduces additional
issues that don't exist in fully opaque mode. D105155 is an example
of a design problem. Looking at D109259, it would probably need
additional work to support mixed mode (e.g. to generate GEPs for
typed base but opaque result). Mixed mode will also end up
inserting many casts between i8* and ptr, which would require
significant additional work to consistently avoid.
I don't think the mixed mode is particularly valuable, as it
doesn't align with our end goal. The only thing I've found it to
be moderately useful for is adding some opaque pointer tests in
between typed pointer tests, but I think we can live without that.
Differential Revision: https://reviews.llvm.org/D109290
This is important as with exceptions enabled, non-POD allocas often have
two lifetime ends: the exception handler, and the normal one.
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D108365
Similar to D97585.
D25456 used `S_ATTR_LIVE_SUPPORT` to ensure the data variable will be retained
or discarded as a unit with the counter variable, so llvm.compiler.used is
sufficient. It allows ld to dead strip unneeded profc and profd variables.
Reviewed By: vsk
Differential Revision: https://reviews.llvm.org/D105445
This reverts commit f653beea88.
It broke Windows coverage-inline.cpp because link.exe has a limitation
that external symbols in IMAGE_COMDAT_SELECT_ASSOCIATIVE don't work.
It essentially dropped the previous size optimization for coverage
because coverage doesn't rename comdat by default.
Needs more investigation what we should do.
The NS==0 condition used by D103717 missed a corner case: if the current copy
does not have a hash suffix (e.g. weak_odr), a copy with value profiling (with a
different CFG) may exist. This is super rare, but is possible with pre-inlining
PGO instrumentation (which can make a weak_odr function inlines its callees
differently, sometimes with value profiling while sometimes without).
If the current copy with private profd is prevailing, the non-prevailing copy
may get an undefined symbol if a caller inlining the non-prevailing function
references its profd. If the other copy with non-private profd is prevailing,
the current copy may cause a "relocation to discarded section" linker error.
The fix is straightforward: just keep non-private profd in this case.
With this change, a stage 2 (`-DLLVM_TARGETS_TO_BUILD=X86 -DLLVM_BUILD_INSTRUMENTED=IR`)
clang is 0.08% larger (172431496/172286720-1).
`stat -c %s **/*.o | awk '{s+=$1}END{print s}' is 0.026% larger.
The majority of D103717's benefits remains.
Reviewed By: xur
Differential Revision: https://reviews.llvm.org/D108432
We found that AIX was not covered in most of the InstrProfiling tests.
So we are trying to enable the tests gradually.
This is to add AIX triple to platform tests to make sure the
registrations are OK.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D108490
The COFF specific `DataReferencedByCode` complexity (D103372 D103717) is due to
a link.exe limitation: an external symbol in IMAGE_COMDAT_SELECT_ASSOCIATIVE is
not really dropped, so it can cause duplicate definition error.
They were previously unconstrained, which allowed them to be reordered
before the shadow memory write.
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D107901
When none of the translation units in the binary have been instrumented
we shouldn't need to link the profile runtime. However, because we pass
-u__llvm_profile_runtime on Linux and Fuchsia, the runtime would still
be pulled in and incur some overhead. On Fuchsia which uses runtime
counter relocation, it also means that we cannot reference the bias
variable unconditionally.
This change modifies the InstrProfiling pass to pull in the profile
runtime only when needed by declaring the __llvm_profile_runtime symbol
in the translation unit only when needed. For now we restrict this only
for Fuchsia, but this can be later expanded to other platforms. This
approach was already used prior to 9a041a7522, but we changed it
to always generate the __llvm_profile_runtime due to a TAPI limitation,
but that limitation may no longer apply, and it certainly doesn't apply
on platforms like Fuchsia.
Differential Revision: https://reviews.llvm.org/D98061
Rather than emitting the bias variable lazily as needed, emit it
eagerly. This allows profile runtime to refer to this variable
unconditionally without having to use the weak reference. The bias
variable is in a COMDAT so there'll never be more than one instance,
and if it's not needed, linker should be able to GC it, so the overhead
should be minimal.
Differential Revision: https://reviews.llvm.org/D107377
Change `CountersPtr` in `__profd_` to a label difference, which is a link-time
constant. On ELF, when linking a shared object, this requires that `__profc_` is
either private or linkonce/linkonce_odr hidden. On COFF, we need D104564 so that
`.quad a-b` (64-bit label difference) can lower to a 32-bit PC-relative relocation.
```
# ELF: R_X86_64_PC64 (PC-relative)
.quad .L__profc_foo-.L__profd_foo
# Mach-O: a pair of 8-byte X86_64_RELOC_UNSIGNED and X86_64_RELOC_SUBTRACTOR
.quad l___profc_foo-l___profd_foo
# COFF: we actually use IMAGE_REL_AMD64_REL32/IMAGE_REL_ARM64_REL32 so
# the high 32-bit value is zero even if .L__profc_foo < .L__profd_foo
# As compensation, we truncate CountersDelta in the header so that
# __llvm_profile_merge_from_buffer and llvm-profdata reader keep working.
.quad .L__profc_foo-.L__profd_foo
```
(Note: link.exe sorts `.lprfc` before `.lprfd` even if the object writer
has `.lprfd` before `.lprfc`, so we cannot work around by reordering
`.lprfc` and `.lprfd`.)
With this change, a stage 2 (`-DLLVM_TARGETS_TO_BUILD=X86 -DLLVM_BUILD_INSTRUMENTED=IR`)
`ld -pie` linked clang is 1.74% smaller due to fewer R_X86_64_RELATIVE relocations.
```
% readelf -r pie | awk '$3~/R.*/{s[$3]++} END {for (k in s) print k, s[k]}'
R_X86_64_JUMP_SLO 331
R_X86_64_TPOFF64 2
R_X86_64_RELATIVE 476059 # was: 607712
R_X86_64_64 2616
R_X86_64_GLOB_DAT 31
```
The absolute function address (used by llvm-profdata to collect indirect call
targets) can be converted to relative as well, but is not done in this patch.
Differential Revision: https://reviews.llvm.org/D104556
This removes an abuse of ELF linker behaviors while keeping Mach-O/COFF linker
behaviors unchanged.
ELF: when module_ctor is in a comdat, this patch removes reliance on a linker
abuse (an SHT_INIT_ARRAY in a section group retains the whole group) by using
SHF_GNU_RETAIN. No linker behavior difference when module_ctor is not in a comdat.
Mach-O: module_ctor gets `N_NO_DEAD_STRIP`. No linker behavior difference
because module_ctor is already referenced by a `S_MOD_INIT_FUNC_POINTERS`
section (GC root).
PE/COFF: no-op. SanitizerCoverage already appends module_ctor to `llvm.used`.
Other sanitizers: llvm.used for local linkage is not implemented in
`TargetLoweringObjectFileCOFF::emitLinkerDirectives` (once implemented or
switched to a non-local linkage, COFF can use module_ctor in comdat (i.e.
generalize ELF-specific rL301586)).
There is no object file size difference.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D106246
In the textual format, `noduplicates` means no COMDAT/section group
deduplication is performed. Therefore, if both sets of sections are retained, and
they happen to define strong external symbols with the same names,
there will be a duplicate definition linker error.
In PE/COFF, the selection kind lowers to `IMAGE_COMDAT_SELECT_NODUPLICATES`.
The name describes the corollary instead of the immediate semantics. The name
can cause confusion to other binary formats (ELF, wasm) which have implemented/
want to implement the "no deduplication" selection kind. Rename it to be clearer.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D106319
We need the compiler generated variable to override the weak symbol of
the same name inside the profile runtime, but using LinkOnceODRLinkage
results in weak symbol being emitted in which case the symbol selected
by the linker is going to depend on the order of inputs which can be
fragile.
This change replaces the use of weak definition inside the runtime with
a weak alias. We place the compiler generated symbol inside a COMDAT
group so dead definition can be garbage collected by the linker.
We also disable the use of runtime counter relocation on Darwin since
Mach-O doesn't support weak external references, but Darwin already uses
a different continous mode that relies on overmapping so runtime counter
relocation isn't needed there.
Differential Revision: https://reviews.llvm.org/D105176
This patch fixes code that incorrectly handled dbg.values with duplicate
location operands, i.e. !DIArgList(i32 %a, i32 %a). The errors in
question were caused by either applying an update to dbg.value multiple
times when the update is only valid once, or by updating the
DIExpression for only the first instance of a value that appears
multiple times.
Differential Revision: https://reviews.llvm.org/D105831
This patch fixes an issue which occurred in CodeGenPrepare and
HWAddressSanitizer, which both at some point create a map of Old->New
instructions and update dbg.value uses of these. They did this by
iterating over the dbg.value's location operands, and if an instance of
the old instruction was found, replaceVariableLocationOp would be
called on that dbg.value. This would cause an error if the same operand
appeared multiple times as a location operand, as the first call to
replaceVariableLocationOp would update all uses of the old instruction,
invalidating the old iterator and eventually hitting an assertion.
This has been fixed by no longer iterating over the dbg.value's location
operands directly, but by first collecting them into a set and then
iterating over that, ensuring that we never attempt to replace a
duplicated operand multiple times.
Differential Revision: https://reviews.llvm.org/D105129
We need the compiler generated variable to override the weak symbol of
the same name inside the profile runtime, but using LinkOnceODRLinkage
results in weak symbol being emitted which leads to an issue where the
linker might choose either of the weak symbols potentially disabling the
runtime counter relocation.
This change replaces the use of weak definition inside the runtime with
an external weak reference to address the issue. We also place the
compiler generated symbol inside a COMDAT group so dead definition can
be garbage collected by the linker.
Differential Revision: https://reviews.llvm.org/D105176
This allows application code checks if origin tracking is on before
printing out traces.
-dfsan-track-origins can be 0,1,2.
The current code only distinguishes 1 and 2 in compile time, but not at runtime.
Made runtime distinguish 1 and 2 too.
Reviewed By: browneee
Differential Revision: https://reviews.llvm.org/D105128
The code was previously relying on the fact that an incorrectly
typed global would result in the insertion of a BitCast constant
expression. With opaque pointers, this is no longer the case, so
we should check the type explicitly.
This enable no_sanitize C++ attribute to exclude globals from hwasan
testing, and automatically excludes other sanitizers' globals (such as
ubsan location descriptors).
Differential Revision: https://reviews.llvm.org/D104825