Commit Graph

509 Commits

Author SHA1 Message Date
Sanjoy Das 2aacc0ecca [SCEV] Introduce ScalarEvolution::getOne and getZero.
Summary:
It is fairly common to call SE->getConstant(Ty, 0) or
SE->getConstant(Ty, 1); this change makes such uses a little bit
briefer.

I've refactored the call sites I could find easily to use getZero /
getOne.

Reviewers: hfinkel, majnemer, reames

Subscribers: sanjoy, llvm-commits

Differential Revision: http://reviews.llvm.org/D12947

llvm-svn: 248362
2015-09-23 01:59:04 +00:00
James Molloy 50a4c27f97 [LoopUtils,LV] Propagate fast-math flags on generated FCmp instructions
We're currently losing any fast-math flags when synthesizing fcmps for
min/max reductions. In LV, make sure we copy over the scalar inst's
flags. In LoopUtils, we know we only ever match patterns with
hasUnsafeAlgebra, so apply that to any synthesized ops.

llvm-svn: 248201
2015-09-21 19:41:19 +00:00
Chandler Carruth 7b560d40bd [PM/AA] Rebuild LLVM's alias analysis infrastructure in a way compatible
with the new pass manager, and no longer relying on analysis groups.

This builds essentially a ground-up new AA infrastructure stack for
LLVM. The core ideas are the same that are used throughout the new pass
manager: type erased polymorphism and direct composition. The design is
as follows:

- FunctionAAResults is a type-erasing alias analysis results aggregation
  interface to walk a single query across a range of results from
  different alias analyses. Currently this is function-specific as we
  always assume that aliasing queries are *within* a function.

- AAResultBase is a CRTP utility providing stub implementations of
  various parts of the alias analysis result concept, notably in several
  cases in terms of other more general parts of the interface. This can
  be used to implement only a narrow part of the interface rather than
  the entire interface. This isn't really ideal, this logic should be
  hoisted into FunctionAAResults as currently it will cause
  a significant amount of redundant work, but it faithfully models the
  behavior of the prior infrastructure.

- All the alias analysis passes are ported to be wrapper passes for the
  legacy PM and new-style analysis passes for the new PM with a shared
  result object. In some cases (most notably CFL), this is an extremely
  naive approach that we should revisit when we can specialize for the
  new pass manager.

- BasicAA has been restructured to reflect that it is much more
  fundamentally a function analysis because it uses dominator trees and
  loop info that need to be constructed for each function.

All of the references to getting alias analysis results have been
updated to use the new aggregation interface. All the preservation and
other pass management code has been updated accordingly.

The way the FunctionAAResultsWrapperPass works is to detect the
available alias analyses when run, and add them to the results object.
This means that we should be able to continue to respect when various
passes are added to the pipeline, for example adding CFL or adding TBAA
passes should just cause their results to be available and to get folded
into this. The exception to this rule is BasicAA which really needs to
be a function pass due to using dominator trees and loop info. As
a consequence, the FunctionAAResultsWrapperPass directly depends on
BasicAA and always includes it in the aggregation.

This has significant implications for preserving analyses. Generally,
most passes shouldn't bother preserving FunctionAAResultsWrapperPass
because rebuilding the results just updates the set of known AA passes.
The exception to this rule are LoopPass instances which need to preserve
all the function analyses that the loop pass manager will end up
needing. This means preserving both BasicAAWrapperPass and the
aggregating FunctionAAResultsWrapperPass.

Now, when preserving an alias analysis, you do so by directly preserving
that analysis. This is only necessary for non-immutable-pass-provided
alias analyses though, and there are only three of interest: BasicAA,
GlobalsAA (formerly GlobalsModRef), and SCEVAA. Usually BasicAA is
preserved when needed because it (like DominatorTree and LoopInfo) is
marked as a CFG-only pass. I've expanded GlobalsAA into the preserved
set everywhere we previously were preserving all of AliasAnalysis, and
I've added SCEVAA in the intersection of that with where we preserve
SCEV itself.

One significant challenge to all of this is that the CGSCC passes were
actually using the alias analysis implementations by taking advantage of
a pretty amazing set of loop holes in the old pass manager's analysis
management code which allowed analysis groups to slide through in many
cases. Moving away from analysis groups makes this problem much more
obvious. To fix it, I've leveraged the flexibility the design of the new
PM components provides to just directly construct the relevant alias
analyses for the relevant functions in the IPO passes that need them.
This is a bit hacky, but should go away with the new pass manager, and
is already in many ways cleaner than the prior state.

Another significant challenge is that various facilities of the old
alias analysis infrastructure just don't fit any more. The most
significant of these is the alias analysis 'counter' pass. That pass
relied on the ability to snoop on AA queries at different points in the
analysis group chain. Instead, I'm planning to build printing
functionality directly into the aggregation layer. I've not included
that in this patch merely to keep it smaller.

Note that all of this needs a nearly complete rewrite of the AA
documentation. I'm planning to do that, but I'd like to make sure the
new design settles, and to flesh out a bit more of what it looks like in
the new pass manager first.

Differential Revision: http://reviews.llvm.org/D12080

llvm-svn: 247167
2015-09-09 17:55:00 +00:00
James Molloy 520838977b Rename ExitCount to BackedgeTakenCount, because that's what it is.
We called a variable ExitCount, stored the backedge count in it, then redefined it to be the exit count again.

llvm-svn: 247140
2015-09-09 12:51:10 +00:00
James Molloy 89eccee4db Delay predication of stores until near the end of vector code generation
Predicating stores requires creating extra blocks. It's much cleaner if we do this in one pass instead of mutating the CFG while writing vector instructions.

Besides which we can make use of helper functions to update domtree for us, reducing the work we need to do.

llvm-svn: 247139
2015-09-09 12:51:06 +00:00
James Molloy 1e583704f5 [LV] Don't bail to MiddleBlock if a runtime check fails, bail to ScalarPH instead
We were bailing to two places if our runtime checks failed. If the initial overflow check failed, we'd go to ScalarPH. If any other check failed, we'd go to MiddleBlock. This caused us to have to have an extra PHI per induction and reduction as the vector loop's exit block was not dominated by its latch.

There's no need to have this behavior - if we just always go to ScalarPH we can get rid of a bunch of complexity.

llvm-svn: 246637
2015-09-02 10:15:39 +00:00
James Molloy f2523e38d8 [LV] Move some code around slightly to make the intent of the function more clear.
NFC.

llvm-svn: 246636
2015-09-02 10:15:32 +00:00
James Molloy aca2f400ba [LV] Cleanup: Sink an IRBuilder closer to its uses.
NFC.

llvm-svn: 246635
2015-09-02 10:15:27 +00:00
James Molloy cba9230507 [LV] Refactor all runtime check emissions into helper functions.
This reduces the complexity of createEmptyBlock() and will open the door to further refactoring.

The test change is simply because we're now constant folding a trivial test.

llvm-svn: 246634
2015-09-02 10:15:22 +00:00
James Molloy ff623dce39 [LV] Pull creation of trip counts into a helper function.
... and do a tad of tidyup while we're at it. Because StartIdx must now be zero, there's no difference between Count and EndIdx.

llvm-svn: 246633
2015-09-02 10:15:16 +00:00
James Molloy 239ff5d193 [LV] Factor the creation of the loop induction variable out of createEmptyLoop()
It makes things easier to understand if this is in a helper method. This is part of my ongoing spaghetti-removal operation on createEmptyLoop.

llvm-svn: 246632
2015-09-02 10:15:09 +00:00
James Molloy a860a2216a [LV] Never widen an induction variable.
There's no need to widen canonical induction variables. It's just as efficient to create a *new*, wide, induction variable.

Consider, if we widen an indvar, then we'll have to truncate it before its uses anyway (1 trunc). If we create a new indvar instead, we'll have to truncate that instead (1 trunc) [besides which IndVars should go and clean up our mess after us anyway on principle].

This lets us remove a ton of special-casing code.

llvm-svn: 246631
2015-09-02 10:15:05 +00:00
James Molloy c07701b017 [LV] Switch to using canonical induction variables.
Vectorized loops only ever have one induction variable. All induction PHIs from the scalar loop are rewritten to be in terms of this single indvar.

We were trying very hard to pick an indvar that already existed, even if that indvar wasn't canonical (didn't start at zero). But trying so hard is really fruitless - creating a new, canonical, indvar only results in one extra add in the worst case and that add is trivially easy to push through the PHI out of the loop by instcombine.

If we try and be less clever here and instead let instcombine clean up our mess (as we do in many other places in LV), we can remove unneeded complexity.

llvm-svn: 246630
2015-09-02 10:14:54 +00:00
Tyler Nowicki 5eaa5a9d26 Improve vectorization diagnostic messages and extend vectorize(enable) pragma.
This patch changes the analysis diagnostics produced when loops with
floating-point recurrences or memory operations are identified. The new messages 
say "cannot prove it is safe to reorder * operations; allow reordering by
specifying #pragma clang loop vectorize(enable)". Depending on the type of 
diagnostic the message will include additional options such as ffast-math or
__restrict__.

This patch also allows the vectorize(enable) pragma to override the low pointer
memory check threshold. When the hint is given a higher threshold is used.

See the clang patch for the options produced for each diagnostic.

llvm-svn: 246187
2015-08-27 18:56:49 +00:00
Chad Rosier c94f8e2906 [LoopVectorize] Add Support for Small Size Reductions.
Unlike scalar operations, we can perform vector operations on element types that
are smaller than the native integer types. We type-promote scalar operations if
they are smaller than a native type (e.g., i8 arithmetic is promoted to i32
arithmetic on Arm targets). This patch detects and removes type-promotions
within the reduction detection framework, enabling the vectorization of small
size reductions.

In the legality phase, we look through the ANDs and extensions that InstCombine
creates during promotion, keeping track of the smaller type. In the
profitability phase, we use the smaller type and ignore the ANDs and extensions
in the cost model. Finally, in the code generation phase, we truncate the result
of the reduction to allow InstCombine to rewrite the entire expression in the
smaller type.

This fixes PR21369.
http://reviews.llvm.org/D12202

Patch by Matt Simpson <mssimpso@codeaurora.org>!

llvm-svn: 246149
2015-08-27 14:12:17 +00:00
James Molloy 1bbf15c57c [LoopVectorize] Extract InductionInfo into a helper class...
... and move it into LoopUtils where it can be used by other passes, just like ReductionDescriptor. The API is very similar to ReductionDescriptor - that is, not very nice at all. Sorting these both out will come in a followup.

NFC

llvm-svn: 246145
2015-08-27 09:53:00 +00:00
Tyler Nowicki e0f400feaa Improved printing of analysis diagnostics in the loop vectorizer.
This patch ensures that every analysis diagnostic produced by the vectorizer
will be printed if the loop has a vectorization hint on it. The condition has
also been improved to prevent printing when a disabling hint is specified.

llvm-svn: 246132
2015-08-27 01:02:04 +00:00
Wei Mi edae87d819 The patch replace the overflow check in loop vectorization with the minimum loop iterations check.
The loop minimum iterations check below ensures the loop has enough trip count so the generated
vector loop will likely be executed, and it covers the overflow check.

Differential Revision: http://reviews.llvm.org/D12107.

llvm-svn: 245952
2015-08-25 16:43:47 +00:00
Tyler Nowicki 552a62fabc Standardized 'failed' to 'Failed' in LoopVectorizationRequirements.
llvm-svn: 245759
2015-08-21 23:03:24 +00:00
Michael Zolotukhin 2a3d99fedf [LoopVectorize] Propagate 'nontemporal' attribute into vectorized instructions.
llvm-svn: 245632
2015-08-20 22:27:38 +00:00
Chandler Carruth 2f1fd1658f [PM] Port ScalarEvolution to the new pass manager.
This change makes ScalarEvolution a stand-alone object and just produces
one from a pass as needed. Making this work well requires making the
object movable, using references instead of overwritten pointers in
a number of places, and other refactorings.

I've also wired it up to the new pass manager and added a RUN line to
a test to exercise it under the new pass manager. This includes basic
printing support much like with other analyses.

But there is a big and somewhat scary change here. Prior to this patch
ScalarEvolution was never *actually* invalidated!!! Re-running the pass
just re-wired up the various other analyses and didn't remove any of the
existing entries in the SCEV caches or clear out anything at all. This
might seem OK as everything in SCEV that can uses ValueHandles to track
updates to the values that serve as SCEV keys. However, this still means
that as we ran SCEV over each function in the module, we kept
accumulating more and more SCEVs into the cache. At the end, we would
have a SCEV cache with every value that we ever needed a SCEV for in the
entire module!!! Yowzers. The releaseMemory routine would dump all of
this, but that isn't realy called during normal runs of the pipeline as
far as I can see.

To make matters worse, there *is* actually a key that we don't update
with value handles -- there is a map keyed off of Loop*s. Because
LoopInfo *does* release its memory from run to run, it is entirely
possible to run SCEV over one function, then over another function, and
then lookup a Loop* from the second function but find an entry inserted
for the first function! Ouch.

To make matters still worse, there are plenty of updates that *don't*
trip a value handle. It seems incredibly unlikely that today GVN or
another pass that invalidates SCEV can update values in *just* such
a way that a subsequent run of SCEV will incorrectly find lookups in
a cache, but it is theoretically possible and would be a nightmare to
debug.

With this refactoring, I've fixed all this by actually destroying and
recreating the ScalarEvolution object from run to run. Technically, this
could increase the amount of malloc traffic we see, but then again it is
also technically correct. ;] I don't actually think we're suffering from
tons of malloc traffic from SCEV because if we were, the fact that we
never clear the memory would seem more likely to have come up as an
actual problem before now. So, I've made the simple fix here. If in fact
there are serious issues with too much allocation and deallocation,
I can work on a clever fix that preserves the allocations (while
clearing the data) between each run, but I'd prefer to do that kind of
optimization with a test case / benchmark that shows why we need such
cleverness (and that can test that we actually make it faster). It's
possible that this will make some things faster by making the SCEV
caches have higher locality (due to being significantly smaller) so
until there is a clear benchmark, I think the simple change is best.

Differential Revision: http://reviews.llvm.org/D12063

llvm-svn: 245193
2015-08-17 02:08:17 +00:00
Sanjay Patel fec7965b36 fix minsize detection: minsize attribute implies optimizing for size
llvm-svn: 244617
2015-08-11 15:56:31 +00:00
Sanjay Patel 2a3eb41deb fix code that was accidentally commented out in previous commit
llvm-svn: 244610
2015-08-11 15:08:29 +00:00
Sanjay Patel 320217668e fix typos in comments; NFC
llvm-svn: 244609
2015-08-11 15:04:51 +00:00
Sanjay Patel 25b2601bca fix typo in comment; NFC
llvm-svn: 244607
2015-08-11 14:45:08 +00:00
Tyler Nowicki c94d6ad241 Print vectorization analysis when loop hint is specified.
This patch and a relatec clang patch solve the problem of having to explicitly enable analysis when specifying a loop hint pragma to get the diagnostics. Passing AlwasyPrint as the pass name (see below) causes the front-end to print the diagnostic if the user has specified '-Rpass-analysis' without an '=<target-pass>’. Users of loop hints can pass that compiler option without having to specify the pass and they will get diagnostics for only those loops with loop hints.

llvm-svn: 244555
2015-08-11 01:09:15 +00:00
Tyler Nowicki 233773837e Moved LoopVectorizeHints and related functions before LoopVectorizationLegality and LoopVectorizationCostModel.
llvm-svn: 244552
2015-08-11 00:52:54 +00:00
Tyler Nowicki 2d5802f38d Simplify processLoop() by moving loop hint verification into Hints::allowVectorization().
llvm-svn: 244550
2015-08-11 00:35:44 +00:00
Adam Nemet 5b0a479541 [LAA] Change name from addRuntimeCheck to addRuntimeChecks, NFC
This was requested by Hal in D11205.

llvm-svn: 244540
2015-08-11 00:09:37 +00:00
Tyler Nowicki 652b0dabe6 Extend late diagnostics to include late test for runtime pointer checks.
This patch moves checking the threshold of runtime pointer checks to the vectorization requirements (late diagnostics) and emits a diagnostic that infroms the user the loop would be vectorized if not for exceeding the pointer-check threshold. Clang will also append the options that can be used to allow vectorization.

llvm-svn: 244523
2015-08-10 23:01:55 +00:00
Tyler Nowicki c1a86f5866 Late evaluation of the fast-math vectorization requirement.
This patch moves the verification of fast-math to just before vectorization is done. This way we can tell clang to append the command line options would that allow floating-point commutativity. Specifically those are enableing fast-math or specifying a loop hint. 

llvm-svn: 244489
2015-08-10 19:51:46 +00:00
Tyler Nowicki 4d62f2e039 Modify diagnostic messages to clearly indicate the why interleaving wasn't done.
Sometimes interleaving is not beneficial, as determined by the cost-model and sometimes it is disabled by a loop hint (by the user). This patch modifies the diagnostic messages to make it clear why interleaving wasn't done.

llvm-svn: 244485
2015-08-10 19:14:16 +00:00
Silviu Baranga 61bdc51339 [TTI] Add a hook for specifying per-target defaults for Interleaved Accesses
Summary:
This adds a hook to TTI which enables us to selectively turn on by default
interleaved access vectorization for targets on which we have have performed
the required benchmarking.

Reviewers: rengolin

Subscribers: rengolin, llvm-commits

Differential Revision: http://reviews.llvm.org/D11901

llvm-svn: 244449
2015-08-10 14:50:54 +00:00
Sanjay Patel 924879ad2c wrap OptSize and MinSize attributes for easier and consistent access (NFCI)
Create wrapper methods in the Function class for the OptimizeForSize and MinSize
attributes. We want to hide the logic of "or'ing" them together when optimizing
just for size (-Os).

Currently, we are not consistent about this and rely on a front-end to always set
OptimizeForSize (-Os) if MinSize (-Oz) is on. Thus, there are 18 FIXME changes here
that should be added as follow-on patches with regression tests.

This patch is NFC-intended: it just replaces existing direct accesses of the attributes
by the equivalent wrapper call.

Differential Revision: http://reviews.llvm.org/D11734

llvm-svn: 243994
2015-08-04 15:49:57 +00:00
Wei Mi deee61e434 Create a wrapper pass for BlockFrequencyInfo.
This is useful when we want to do block frequency analysis
conditionally (e.g. only in PGO mode) but don't want to add
one more pass dependence.

Patch by congh.
Approved by dexonsmith.
Differential Revision: http://reviews.llvm.org/D11196

llvm-svn: 242248
2015-07-14 23:40:50 +00:00
Adam Nemet 7cdebac0c8 [LAA] Lift RuntimePointerCheck out of LoopAccessInfo, NFC
I am planning to add more nested classes inside RuntimePointerCheck so
all these triple-nesting would be hard to follow.

Also rename it to RuntimePointerChecking (i.e. append 'ing').

llvm-svn: 242218
2015-07-14 22:32:44 +00:00
Benjamin Kramer e448b5be05 Avoid using Loop::getSubLoopsVector.
Passes should never modify it, just use the const version. While there
reduce copying in LoopInterchange. No functional change intended.

llvm-svn: 242041
2015-07-13 17:21:14 +00:00
Hal Finkel 9cf58c4095 Move getStrideFromPointer and friends from LoopVectorize to VectorUtils
The following functions are moved from the LoopVectorizer to VectorUtils:

  - getGEPInductionOperand
  - stripGetElementPtr
  - getUniqueCastUse
  - getStrideFromPointer

These used to be static functions in LoopVectorize, but will also be used by
the upcoming loop versioning LICM transformation.

Patch by Ashutosh Nema!

llvm-svn: 241980
2015-07-11 10:52:42 +00:00
Tyler Nowicki 3960d85262 Renamed some uses of unroll to interleave in the vectorizer.
llvm-svn: 241971
2015-07-11 00:31:11 +00:00
Jingyue Wu a277561922 [TTI] BasicTTIImpl assumes no vector registers
Summary:
Following the discussion on r241884, it's more reasonable to assume that a
target has no vector registers by default instead of letting every such
target overrides getNumberOfRegisters.

Therefore, this patch modifies BasicTTIImpl::getNumberOfRegisters to
return 0 when Vector is true, and partially reverts r241884 which
modifies NVPTXTTIImpl::getNumberOfRegisters.

It also fixes a performance bug in LoopVectorizer. Even if a target has
no vector registers, vectorization may still help ILP. So, we need both
checks to be false before disabling loop vectorization all together.

Reviewers: hfinkel

Subscribers: llvm-commits, jholewinski

Differential Revision: http://reviews.llvm.org/D11108

llvm-svn: 241942
2015-07-10 21:14:54 +00:00
Michael Zolotukhin 97295ea7dd [LoopVectorizer] Rename BypassBlock to VectorPH, and CheckBlock to NewVectorPH. NFCI.
llvm-svn: 241742
2015-07-08 21:48:03 +00:00
Michael Zolotukhin 8c874bb2f1 [LoopVectorizer] Restructurize code for emitting RT checks. NFCI.
Place all code corresponding to a run-time check in one place.
Previously we generated some code, then proceeded to a next check, then
finished the code for the first check (like splitting blocks and
generating branches). Now the code for generating a check is
self-contained.

llvm-svn: 241741
2015-07-08 21:47:59 +00:00
Michael Zolotukhin 66f5591f9b [LoopVectorizer] Remove redundant variables PastOverflowCheck and OverflowCheckAnchor. NFCI.
llvm-svn: 241740
2015-07-08 21:47:56 +00:00
Michael Zolotukhin 00345cadd5 [LoopVectorizer] Move some code around to ease further refactoring. NFCI.
llvm-svn: 241739
2015-07-08 21:47:53 +00:00
Michael Zolotukhin 7db3063f87 [LoopVectorizer] Remove redundant variable LastBypassBlock. NFC.
llvm-svn: 241738
2015-07-08 21:47:47 +00:00
Alexey Samsonov 958dab71b3 [LoopVectorize] Use ReplaceInstWithInst() helper where appropriate.
This is mostly an NFC, which increases code readability (instead of
saving old terminator, generating new one in front of old, and deleting
old, we just call a function). However, it would additionaly copy
the debug location from old instruction to replacement, which
would help PR23837.

llvm-svn: 241197
2015-07-01 22:18:30 +00:00
David Majnemer 9f3979fd78 [LoopVectorize] Pointer indicies may be wider than the pointer
If we are dealing with a pointer induction variable, isInductionPHI
gives back a step value of Stride / size of pointer.  However, we might
be indexing with a legal type wider than the pointer width.
Handle this by inserting casts where appropriate instead of crashing.

This fixes PR23954.

llvm-svn: 240877
2015-06-27 08:38:17 +00:00
David Blaikie b447ac6435 Move VectorUtils from Transforms to Analysis to correct layering violation
llvm-svn: 240804
2015-06-26 18:02:52 +00:00
Michael Zolotukhin 79ff564ef3 [LoopVectorizer] Fix bailing-out condition for OptForSize case.
With option OptForSize enabled, the Loop Vectorizer is not supposed to
create tail loop. The condition checking that was invalid and was not
matching to the comment above.

Patch by Marianne Mailhot-Sarrasin.

llvm-svn: 240556
2015-06-24 17:26:24 +00:00
Alexander Kornienko f00654e31b Revert r240137 (Fixed/added namespace ending comments using clang-tidy. NFC)
Apparently, the style needs to be agreed upon first.

llvm-svn: 240390
2015-06-23 09:49:53 +00:00