The static analyzer is warning about potential null dereference, but we should be able to use cast<ConstantFPSDNode> directly and if not assert will fire for us.
llvm-svn: 372499
Recommit: fix asan errors.
The way MachinePipeliner uses these target hooks is stateful - we reduce trip
count by one per call to reduceLoopCount. It's a little overfit for hardware
loops, where we don't have to worry about stitching a loop induction variable
across prologs and epilogs (the induction variable is implicit).
This patch introduces a new API:
/// Analyze loop L, which must be a single-basic-block loop, and if the
/// conditions can be understood enough produce a PipelinerLoopInfo object.
virtual std::unique_ptr<PipelinerLoopInfo>
analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const;
The return value is expected to be an implementation of the abstract class:
/// Object returned by analyzeLoopForPipelining. Allows software pipelining
/// implementations to query attributes of the loop being pipelined.
class PipelinerLoopInfo {
public:
virtual ~PipelinerLoopInfo();
/// Return true if the given instruction should not be pipelined and should
/// be ignored. An example could be a loop comparison, or induction variable
/// update with no users being pipelined.
virtual bool shouldIgnoreForPipelining(const MachineInstr *MI) const = 0;
/// Create a condition to determine if the trip count of the loop is greater
/// than TC.
///
/// If the trip count is statically known to be greater than TC, return
/// true. If the trip count is statically known to be not greater than TC,
/// return false. Otherwise return nullopt and fill out Cond with the test
/// condition.
virtual Optional<bool>
createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB,
SmallVectorImpl<MachineOperand> &Cond) = 0;
/// Modify the loop such that the trip count is
/// OriginalTC + TripCountAdjust.
virtual void adjustTripCount(int TripCountAdjust) = 0;
/// Called when the loop's preheader has been modified to NewPreheader.
virtual void setPreheader(MachineBasicBlock *NewPreheader) = 0;
/// Called when the loop is being removed.
virtual void disposed() = 0;
};
The Pipeliner (ModuloSchedule.cpp) can use this object to modify the loop while
allowing the target to hold its own state across all calls. This API, in
particular the disjunction of creating a trip count check condition and
adjusting the loop, improves the code quality in ModuloSchedule.cpp.
llvm-svn: 372463
The way MachinePipeliner uses these target hooks is stateful - we reduce trip
count by one per call to reduceLoopCount. It's a little overfit for hardware
loops, where we don't have to worry about stitching a loop induction variable
across prologs and epilogs (the induction variable is implicit).
This patch introduces a new API:
/// Analyze loop L, which must be a single-basic-block loop, and if the
/// conditions can be understood enough produce a PipelinerLoopInfo object.
virtual std::unique_ptr<PipelinerLoopInfo>
analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const;
The return value is expected to be an implementation of the abstract class:
/// Object returned by analyzeLoopForPipelining. Allows software pipelining
/// implementations to query attributes of the loop being pipelined.
class PipelinerLoopInfo {
public:
virtual ~PipelinerLoopInfo();
/// Return true if the given instruction should not be pipelined and should
/// be ignored. An example could be a loop comparison, or induction variable
/// update with no users being pipelined.
virtual bool shouldIgnoreForPipelining(const MachineInstr *MI) const = 0;
/// Create a condition to determine if the trip count of the loop is greater
/// than TC.
///
/// If the trip count is statically known to be greater than TC, return
/// true. If the trip count is statically known to be not greater than TC,
/// return false. Otherwise return nullopt and fill out Cond with the test
/// condition.
virtual Optional<bool>
createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB,
SmallVectorImpl<MachineOperand> &Cond) = 0;
/// Modify the loop such that the trip count is
/// OriginalTC + TripCountAdjust.
virtual void adjustTripCount(int TripCountAdjust) = 0;
/// Called when the loop's preheader has been modified to NewPreheader.
virtual void setPreheader(MachineBasicBlock *NewPreheader) = 0;
/// Called when the loop is being removed.
virtual void disposed() = 0;
};
The Pipeliner (ModuloSchedule.cpp) can use this object to modify the loop while
allowing the target to hold its own state across all calls. This API, in
particular the disjunction of creating a trip count check condition and
adjusting the loop, improves the code quality in ModuloSchedule.cpp.
llvm-svn: 372376
This reverts r372314, reapplying r372285 and the commits which depend
on it (r372286-r372293, and r372296-r372297)
This was missing one switch to getTargetConstant in an untested case.
llvm-svn: 372338
This broke the Chromium build, causing it to fail with e.g.
fatal error: error in backend: Cannot select: t362: v4i32 = X86ISD::VSHLI t392, Constant:i8<15>
See llvm-commits thread of r372285 for details.
This also reverts r372286, r372287, r372288, r372289, r372290, r372291,
r372292, r372293, r372296, and r372297, which seemed to depend on the
main commit.
> Encode them directly as an imm argument to G_INTRINSIC*.
>
> Since now intrinsics can now define what parameters are required to be
> immediates, avoid using registers for them. Intrinsics could
> potentially want a constant that isn't a legal register type. Also,
> since G_CONSTANT is subject to CSE and legalization, transforms could
> potentially obscure the value (and create extra work for the
> selector). The register bank of a G_CONSTANT is also meaningful, so
> this could throw off future folding and legalization logic for AMDGPU.
>
> This will be much more convenient to work with than needing to call
> getConstantVRegVal and checking if it may have failed for every
> constant intrinsic parameter. AMDGPU has quite a lot of intrinsics wth
> immarg operands, many of which need inspection during lowering. Having
> to find the value in a register is going to add a lot of boilerplate
> and waste compile time.
>
> SelectionDAG has always provided TargetConstant for constants which
> should not be legalized or materialized in a register. The distinction
> between Constant and TargetConstant was somewhat fuzzy, and there was
> no automatic way to force usage of TargetConstant for certain
> intrinsic parameters. They were both ultimately ConstantSDNode, and it
> was inconsistently used. It was quite easy to mis-select an
> instruction requiring an immediate. For SelectionDAG, start emitting
> TargetConstant for these arguments, and using timm to match them.
>
> Most of the work here is to cleanup target handling of constants. Some
> targets process intrinsics through intermediate custom nodes, which
> need to preserve TargetConstant usage to match the intrinsic
> expectation. Pattern inputs now need to distinguish whether a constant
> is merely compatible with an operand or whether it is mandatory.
>
> The GlobalISelEmitter needs to treat timm as a special case of a leaf
> node, simlar to MachineBasicBlock operands. This should also enable
> handling of patterns for some G_* instructions with immediates, like
> G_FENCE or G_EXTRACT.
>
> This does include a workaround for a crash in GlobalISelEmitter when
> ARM tries to uses "imm" in an output with a "timm" pattern source.
llvm-svn: 372314
Encode them directly as an imm argument to G_INTRINSIC*.
Since now intrinsics can now define what parameters are required to be
immediates, avoid using registers for them. Intrinsics could
potentially want a constant that isn't a legal register type. Also,
since G_CONSTANT is subject to CSE and legalization, transforms could
potentially obscure the value (and create extra work for the
selector). The register bank of a G_CONSTANT is also meaningful, so
this could throw off future folding and legalization logic for AMDGPU.
This will be much more convenient to work with than needing to call
getConstantVRegVal and checking if it may have failed for every
constant intrinsic parameter. AMDGPU has quite a lot of intrinsics wth
immarg operands, many of which need inspection during lowering. Having
to find the value in a register is going to add a lot of boilerplate
and waste compile time.
SelectionDAG has always provided TargetConstant for constants which
should not be legalized or materialized in a register. The distinction
between Constant and TargetConstant was somewhat fuzzy, and there was
no automatic way to force usage of TargetConstant for certain
intrinsic parameters. They were both ultimately ConstantSDNode, and it
was inconsistently used. It was quite easy to mis-select an
instruction requiring an immediate. For SelectionDAG, start emitting
TargetConstant for these arguments, and using timm to match them.
Most of the work here is to cleanup target handling of constants. Some
targets process intrinsics through intermediate custom nodes, which
need to preserve TargetConstant usage to match the intrinsic
expectation. Pattern inputs now need to distinguish whether a constant
is merely compatible with an operand or whether it is mandatory.
The GlobalISelEmitter needs to treat timm as a special case of a leaf
node, simlar to MachineBasicBlock operands. This should also enable
handling of patterns for some G_* instructions with immediates, like
G_FENCE or G_EXTRACT.
This does include a workaround for a crash in GlobalISelEmitter when
ARM tries to uses "imm" in an output with a "timm" pattern source.
llvm-svn: 372285
* Reordered MVT simple types to group scalable vector types
together.
* New range functions in MachineValueType.h to only iterate over
the fixed-length int/fp vector types.
* Stopped backends which don't support scalable vector types from
iterating over scalable types.
Reviewers: sdesmalen, greened
Reviewed By: greened
Differential Revision: https://reviews.llvm.org/D66339
llvm-svn: 372099
The result integer does not need to be the same width as the input.
AMDGPU, NVPTX, and Hexagon all have patterns working around the types
matching. GlobalISel defines these as being different type indexes.
llvm-svn: 371797
Reapply with fix to reduce resources required by the compiler - use
unsigned[2] instead of std::pair. This causes clang and gcc to compile
the generated file multiple times faster, and hopefully will reduce
the resource requirements on Visual Studio also. This fix is a little
ugly but it's clearly the same issue the previous author of
DFAPacketizer faced (the previous tables use unsigned[2] rather uglily
too).
This patch allows the DFAPacketizer to be queried after a packet is formed to work out which
resources were allocated to the packetized instructions.
This is particularly important for targets that do their own bundle packing - it's not
sufficient to know simply that instructions can share a packet; which slots are used is
also required for encoding.
This extends the emitter to emit a side-table containing resource usage diffs for each
state transition. The packetizer maintains a set of all possible resource states in its
current state. After packetization is complete, all remaining resource states are
possible packetization strategies.
The sidetable is only ~500K for Hexagon, but the extra tracking is disabled by default
(most uses of the packetizer like MachinePipeliner don't care and don't need the extra
maintained state).
Differential Revision: https://reviews.llvm.org/D66936
llvm-svn: 371399
This patch allows the DFAPacketizer to be queried after a packet is formed to work out which
resources were allocated to the packetized instructions.
This is particularly important for targets that do their own bundle packing - it's not
sufficient to know simply that instructions can share a packet; which slots are used is
also required for encoding.
This extends the emitter to emit a side-table containing resource usage diffs for each
state transition. The packetizer maintains a set of all possible resource states in its
current state. After packetization is complete, all remaining resource states are
possible packetization strategies.
The sidetable is only ~500K for Hexagon, but the extra tracking is disabled by default
(most uses of the packetizer like MachinePipeliner don't care and don't need the extra
maintained state).
Differential Revision: https://reviews.llvm.org/D66936
........
Reverted as this is causing "compiler out of heap space" errors on MSVC 2017/19 NDEBUG builds
llvm-svn: 371393
Summary:
This is the first change to enable the TLI to be built per-function so
that -fno-builtin* handling can be migrated to use function attributes.
See discussion on D61634 for background. This is an enabler for fixing
handling of these options for LTO, for example.
This change should not affect behavior, as the provided function is not
yet used to build a specifically per-function TLI, but rather enables
that migration.
Most of the changes were very mechanical, e.g. passing a Function to the
legacy analysis pass's getTLI interface, or in Module level cases,
adding a callback. This is similar to the way the per-function TTI
analysis works.
There was one place where we were looking for builtins but not in the
context of a specific function. See FindCXAAtExit in
lib/Transforms/IPO/GlobalOpt.cpp. I'm somewhat concerned my workaround
could provide the wrong behavior in some corner cases. Suggestions
welcome.
Reviewers: chandlerc, hfinkel
Subscribers: arsenm, dschuff, jvesely, nhaehnle, mehdi_amini, javed.absar, sbc100, jgravelle-google, eraman, aheejin, steven_wu, george.burgess.iv, dexonsmith, jfb, asbirlea, gchatelet, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66428
llvm-svn: 371284
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: nemanjai, javed.absar, hiraditya, kbarton, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, jsji, s.egerton, pzheng, ychen, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67267
llvm-svn: 371212
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: jyknight, sdardis, nemanjai, javed.absar, hiraditya, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, jsji, s.egerton, pzheng, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67229
llvm-svn: 371200
This patch allows the DFAPacketizer to be queried after a packet is formed to work out which
resources were allocated to the packetized instructions.
This is particularly important for targets that do their own bundle packing - it's not
sufficient to know simply that instructions can share a packet; which slots are used is
also required for encoding.
This extends the emitter to emit a side-table containing resource usage diffs for each
state transition. The packetizer maintains a set of all possible resource states in its
current state. After packetization is complete, all remaining resource states are
possible packetization strategies.
The sidetable is only ~500K for Hexagon, but the extra tracking is disabled by default
(most uses of the packetizer like MachinePipeliner don't care and don't need the extra
maintained state).
Differential Revision: https://reviews.llvm.org/D66936
llvm-svn: 371198
Summary:
This patch renames functions that takes or returns alignment as log2, this patch will help with the transition to llvm::Align.
The renaming makes it explicit that we deal with log(alignment) instead of a power of two alignment.
A few renames uncovered dubious assignments:
- `MirParser`/`MirPrinter` was expecting powers of two but `MachineFunction` and `MachineBasicBlock` were using deal with log2(align). This patch fixes it and updates the documentation.
- `MachineBlockPlacement` exposes two flags (`align-all-blocks` and `align-all-nofallthru-blocks`) supposedly interpreted as power of two alignments, internally these values are interpreted as log2(align). This patch updates the documentation,
- `MachineFunctionexposes` exposes `align-all-functions` also interpreted as power of two alignment, internally this value is interpreted as log2(align). This patch updates the documentation,
Reviewers: lattner, thegameg, courbet
Subscribers: dschuff, arsenm, jyknight, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, javed.absar, hiraditya, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, dexonsmith, PkmX, jocewei, jsji, Jim, s.egerton, llvm-commits, courbet
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65945
llvm-svn: 371045
This requires std::intializer_list to be a literal type, which it is
starting with C++14. The downside is that std::bitset is still not
constexpr-friendly so this change contains a re-implementation of most
of it.
Shrinks clang by ~60k.
llvm-svn: 369847
Prefer `MCFixupKind` where possible and add getTargetKind() to
convert to `unsigned` when needed rather than scattering cast
operators around the place.
Differential Revision: https://reviews.llvm.org/D59890
llvm-svn: 369720
Summary:
This clang-tidy check is looking for unsigned integer variables whose initializer
starts with an implicit cast from llvm::Register and changes the type of the
variable to llvm::Register (dropping the llvm:: where possible).
Partial reverts in:
X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister
X86FixupLEAs.cpp - Some functions return unsigned and arguably should be MCRegister
X86FrameLowering.cpp - Some functions return unsigned and arguably should be MCRegister
HexagonBitSimplify.cpp - Function takes BitTracker::RegisterRef which appears to be unsigned&
MachineVerifier.cpp - Ambiguous operator==() given MCRegister and const Register
PPCFastISel.cpp - No Register::operator-=()
PeepholeOptimizer.cpp - TargetInstrInfo::optimizeLoadInstr() takes an unsigned&
MachineTraceMetrics.cpp - MachineTraceMetrics lacks a suitable constructor
Manual fixups in:
ARMFastISel.cpp - ARMEmitLoad() now takes a Register& instead of unsigned&
HexagonSplitDouble.cpp - Ternary operator was ambiguous between unsigned/Register
HexagonConstExtenders.cpp - Has a local class named Register, used llvm::Register instead of Register.
PPCFastISel.cpp - PPCEmitLoad() now takes a Register& instead of unsigned&
Depends on D65919
Reviewers: arsenm, bogner, craig.topper, RKSimon
Reviewed By: arsenm
Subscribers: RKSimon, craig.topper, lenary, aemerson, wuzish, jholewinski, MatzeB, qcolombet, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, wdng, nhaehnle, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, javed.absar, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, tpr, PkmX, jocewei, jsji, Petar.Avramovic, asbirlea, Jim, s.egerton, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65962
llvm-svn: 369041
Now that we've moved to C++14, we no longer need the llvm::make_unique
implementation from STLExtras.h. This patch is a mechanical replacement
of (hopefully) all the llvm::make_unique instances across the monorepo.
llvm-svn: 369013
Summary:
This is patch is part of a serie to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet, jfb, jakehehrlich
Reviewed By: jfb
Subscribers: wuzish, jholewinski, arsenm, dschuff, nemanjai, jvesely, nhaehnle, javed.absar, sbc100, jgravelle-google, hiraditya, aheejin, kbarton, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, dexonsmith, PkmX, jocewei, jsji, s.egerton, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65514
llvm-svn: 367828
Summary:
As part of this, define DenseMapInfo for MCRegister (and Register while I'm at it)
Depends on D65599
Reviewers: arsenm
Subscribers: MatzeB, qcolombet, jvesely, wdng, nhaehnle, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65605
llvm-svn: 367719
Summary:
This was originally reported in D62818.
https://rise4fun.com/Alive/oPH
InstCombine does the opposite fold, in hope that `C l>>/<< Y` expression
will be hoisted out of a loop if `Y` is invariant and `X` is not.
But as it is seen from the diffs here, if it didn't get hoisted,
the produced assembly is almost universally worse.
Much like with my recent "hoist add/sub by/from const" patches,
we should get almost universal win if we hoist constant,
there is almost always an "and/test by imm" instruction,
but "shift of imm" not so much, so we may avoid having to
materialize the immediate, and thus need one less register.
And since we now shift not by constant, but by something else,
the live-range of that something else may reduce.
Special care needs to be applied not to disturb x86 `BT` / hexagon `tstbit`
instruction pattern. And to not get into endless combine loop.
Reviewers: RKSimon, efriedma, t.p.northover, craig.topper, spatel, arsenm
Reviewed By: spatel
Subscribers: hiraditya, MaskRay, wuzish, xbolva00, nikic, nemanjai, jvesely, wdng, nhaehnle, javed.absar, tpr, kristof.beyls, jsji, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62871
llvm-svn: 366955
Rework the TTI cache and software prefetching APIs to prepare for the
introduction of a general system model. Changes include:
- Marking existing interfaces const and/or override as appropriate
- Adding comments
- Adding BasicTTIImpl interfaces that delegate to a subtarget
implementation
- Adding a default "no information" subtarget implementation
Only a handful of targets use these interfaces currently: AArch64,
Hexagon, PPC and SystemZ. AArch64 already has a custom subtarget
implementation, so its custom TTI implementation is migrated to use
the new facilities in BasicTTIImpl to invoke its custom subtarget
implementation. The custom TTI implementations continue to exist for
the other targets with this change. They are not moved over to
subtarget-based implementations.
The end goal is to have the default subtarget implementation defer to
the system model defined by the target. With this change, the default
subtarget implementation essentially returns "no information" for
these interfaces. None of the existing users of TTI will hit that
implementation because they define their own custom TTI
implementations and won't use the BasicTTIImpl implementations.
Once system models are in place for the targets that use these
interfaces, their custom TTI implementations can be removed.
Differential Revision: https://reviews.llvm.org/D63614
llvm-svn: 365676
Avoids using a plain unsigned for registers throughoug codegen.
Doesn't attempt to change every register use, just something a little
more than the set needed to build after changing the return type of
MachineOperand::getReg().
llvm-svn: 364191
As discussed on D62910, we need to check whether particular types of memory access are allowed, not just their alignment/address-space.
This NFC patch adds a MachineMemOperand::Flags argument to allowsMemoryAccess and allowsMisalignedMemoryAccesses, and wires up calls to pass the relevant flags to them.
If people are happy with this approach I can then update X86TargetLowering::allowsMisalignedMemoryAccesses to handle misaligned NT load/stores.
Differential Revision: https://reviews.llvm.org/D63075
llvm-svn: 363179
Implement necessary target hooks to enable MachinePipeliner for P9 only.
The pass is off by default, can be enabled with -ppc-enable-pipeliner for P9.
Differential Revision: https://reviews.llvm.org/D62164
llvm-svn: 363085