move-constructors and move-assignment operators, use memcpy to copy adjacent
POD members.
Previously, classes with one or more Non-POD members would fall back on
element-wise copies for all members, including POD members. This often
generated a lot of IR. Without padding metadata, it wasn't often possible
for the LLVM optimizers to turn the element-wise copies into a memcpy.
This code hasn't yet received any serious tuning. I didn't see any serious
regressions on a self-hosted clang build, or any of the nightly tests, but
I think it's important to get this out in the wild to get more testing.
Insights, feedback and comments welcome.
Many thanks to David Blaikie, Richard Smith, and especially John McCall for
their help and feedback on this work.
llvm-svn: 174919
r173593 made us a little too eager to associate all code at the end of a
function with the user-written 'return' line. This caused problems with
breakpoints as they'd be set in exception handling code preceeding the
actual non-exception return handling code, leading to the breakpoint never
being hit in non-exceptional execution.
This change restores the pre-r173593 exception handling line information where
the cleanup code is associated with the '}' not the return line.
llvm-svn: 174206
implementation; this is much more inline with the original implementation
(i.e., pre-ubsan) and does not require run-time library support.
The trapping implementation can be invoked using either '-fcatch-undefined-behavior'
or '-fsanitize=undefined-trap -fsanitize-undefined-trap-on-error', with the latter
being preferred. Eventually, the -fcatch-undefined-behavior' flag will be removed.
llvm-svn: 173848
One of the gotchas (see changes to CodeGenFunction) was due to the fix in
r139416 (for PR10829). This only worked previously because the top level
lexical block would set the location to the end of the function, the debug
location would be updated (as per r139416), the location would be set to
the end of the function again (but that would no-op, since it was the same
as the previous location), then the return instruction would be emitted using
the debug location.
Once the top level lexical block was no longer emitted, the end-of-function
location change was causing the debug loc to be updated, regressing that bug.
llvm-svn: 173593
Title: [PR9027] volatile struct bug: member is not loaded at -O;
This is caused by last flag passed to @llvm.memcpy being false,
not honoring that aggregate has at least one 'volatile' data member
(even though aggregate itself has not been qualified as 'volatile'.
As a result, optimization optimizes away the memcpy altogether.
Patch review by John MaCall (I still need to fix up a test though).
llvm-svn: 173535
uncovered.
This required manually correcting all of the incorrect main-module
headers I could find, and running the new llvm/utils/sort_includes.py
script over the files.
I also manually added quite a few missing headers that were uncovered by
shuffling the order or moving headers up to be main-module-headers.
llvm-svn: 169237
checks to enable. Remove frontend support for -fcatch-undefined-behavior,
-faddress-sanitizer and -fthread-sanitizer now that they don't do anything.
llvm-svn: 167413
combination of a load+objc_release; this is generally better
for tools that try to track why values are retained and
released. Also use objc_storeStrong when copying a block
(again, only at -O0), which requires us to do a preliminary
store of null in order to compensate for objc_storeStrong's
assign semantics.
llvm-svn: 166085
if (CGM.getModuleDebugInfo())
DebugInfo = CGM.getModuleDebugInfo()
into a call:
maybeInitializeDebugInfo();
This is a simplification for a possible future fix of PR13942.
llvm-svn: 166019
This fixes a regression from r162254, the optimizer has problems reasoning
about the smaller memcpy as it's often not safe to widen a store but making it
smaller is.
llvm-svn: 164917
the trap BB out of the individual checks and into a common function, to prepare
for making this code call into a runtime library. Rename the existing EmitCheck
to EmitTypeCheck to clarify it and to move it out of the way of the new
EmitCheck.
llvm-svn: 163451
AsmStmts. This function is only used by GCCAsmStmts, however. Constraints need
to be properly computed before MSAsmStmts can use EmitAsmStmt. No functional
change intended.
llvm-svn: 162776
* when checking that a pointer or reference refers to appropriate storage for a type, also check the alignment and perform a null check
* check that references are bound to appropriate storage
* check that 'this' has appropriate storage in member accesses and member function calls
llvm-svn: 162523
there's something going on there. Remove the unconditional line entry
and only add one if we're emitting cleanups (any other statements
would be handled normally).
Fixes rdar://9199234
llvm-svn: 160033
if we want to ignore a result, the Dest will be null. Otherwise,
we must copy into it. This means we need to ensure a slot when
loading from a volatile l-value.
With all that in place, fix a bug with chained assignments into
__block variables of aggregate type where we were losing insight into
the actual source of the value during the second assignment.
llvm-svn: 159630
The tablegen'd code does the same thing without this egregious duplication.
In my limited testing everything seems to work, however there can be
differences if the clang and llvm builtin definitions don't match.
llvm-svn: 159371
literal helper functions. All helper functions (global
and locals) use block_invoke as their prefix. Local literal
helper names are prefixed by their enclosing mangled function
names. Blocks in non-local initializers (e.g. a global variable
or a C++11 field) are prefixed by their mangled variable name.
The descriminator number added to end of the name starts off
with blank (for first block) and _<N> (for the N+2-th block).
llvm-svn: 159206
getter result type is safe but does not match with property
type resulting in spurious warning followed by crash in
IRGen. // rdar://11515196
llvm-svn: 157641
When enabled, clang generates bounds checks for array and pointers dereferences. Work to follow in LLVM's backend.
OK'ed by Chad; thanks for the review.
llvm-svn: 156431
and only consider using __cxa_atexit in the Itanium logic. The
default logic is to use atexit().
Emit "guarded" initializers in Microsoft mode unconditionally.
This is definitely not correct, but it's closer to correct than
just not emitting the initializer.
Based on a patch by Timur Iskhodzhanov!
llvm-svn: 155894
attached. Since we do not support any attributes which appertain to a statement
(yet), testing of this is necessarily quite minimal.
Patch by Alexander Kornienko!
llvm-svn: 154723
These patches cause us to miscompile and/or reject code with static
function-local variables in an extern-C context. Previously, we were
papering over this as long as the variables are within the same
translation unit, and had not seen any failures in the wild. We still
need a proper fix, which involves mangling static locals inside of an
extern-C block (as GCC already does), but this patch causes pretty
widespread regressions. Firefox, and many other applications no longer
build.
Lots of test cases have been posted to the list in response to this
commit, so there should be no problem reproducing the issues.
llvm-svn: 153768
For i686 targets (eg. cygwin), I saw "Range must not be empty!" in verifier.
It produces (i32)[0x80000000:0x80000000) from (uint64_t)[0xFFFFFFFF80000000ULL:0x0000000080000000ULL), for signed i32 on MDNode::Range.
llvm-svn: 153382
track whether the referenced declaration comes from an enclosing
local context. I'm amenable to suggestions about the exact meaning
of this bit.
llvm-svn: 152491
we correctly emit loads of BlockDeclRefExprs even when they
don't qualify as ODR-uses. I think I'm adequately convinced
that BlockDeclRefExpr can die.
llvm-svn: 152479
NSNumber, and boolean literals. This includes both Sema and Codegen support.
Included is also support for new Objective-C container subscripting.
My apologies for the large patch. It was very difficult to break apart.
The patch introduces changes to the driver as well to cause clang to link
in additional runtime support when needed to support the new language features.
Docs are forthcoming to document the implementation and behavior of these features.
llvm-svn: 152137
Note that this transformation has a substantial semantic effect outside of ARC: it gives the converted lambda lifetime semantics similar to a block literal. With ARC, the effect is much less obvious because the lifetime of blocks is already managed.
llvm-svn: 151797
We now generate temporary arrays to back std::initializer_list objects
initialized with braces. The initializer_list is then made to point at
the array. We support both ptr+size and start+end forms, although
the latter is untested.
Array lifetime is correct for temporary std::initializer_lists (e.g.
call arguments) and local variables. It is untested for new expressions
and member initializers.
Things left to do:
Massively increase the amount of testing. I need to write tests for
start+end init lists, temporary objects created as a side effect of
initializing init list objects, new expressions, member initialization,
creation of temporary objects (e.g. std::vector) for initializer lists,
and probably more.
Get lifetime "right" for member initializers and new expressions. Not
that either are very useful.
Implement list-initialization of array new expressions.
llvm-svn: 150803
conversion to function pointer. Rather than having IRgen synthesize
the body of this function, we instead introduce a static member
function "__invoke" with the same signature as the lambda's
operator() in the AST. Sema then generates a body for the conversion
to function pointer which simply returns the address of __invoke. This
approach makes it easier to evaluate a call to the conversion function
as a constant, makes the linkage of the __invoke function follow the
normal rules for member functions, and may make life easier down the
road if we ever want to constexpr'ify some of lambdas.
Note that IR generation is responsible for filling in the body of
__invoke (Sema just adds a dummy body), because the body can't
generally be expressed in C++.
Eli, please review!
llvm-svn: 150783
-fno-objc-arc-exceptions. This will allow the optimizer to perform
optimizations which are only safe under that flag.
This is a part of rdar://10803830.
llvm-svn: 150644
constructor, and that constructor is used to initialize an object of static
storage duration such that all members and bases are initialized by constant
expressions, constant initialization is performed. In this case, the object
can still have a non-trivial destructor, and if it does, we must emit a dynamic
initializer which performs no initialization and instead simply registers that
destructor.
llvm-svn: 150419
consume one or more of their arguments. If not done, this will cause a leak
as method will not consume the argument when receiver is null.
// rdar://10444474
llvm-svn: 149184
- Add atomic-to/from-nonatomic cast types
- Emit atomic operations for arithmetic on atomic types
- Emit non-atomic stores for initialisation of atomic types, but atomic stores and loads for every other store / load
- Add a __atomic_init() intrinsic which does a non-atomic store to an _Atomic() type. This is needed for the corresponding C11 stdatomic.h function.
- Enables the relevant __has_feature() checks. The feature isn't 100% complete yet, but it's done enough that we want people testing it.
Still to do:
- Make the arithmetic operations on atomic types (e.g. Atomic(int) foo = 1; foo++;) use the correct LLVM intrinsic if one exists, not a loop with a cmpxchg.
- Add a signal fence builtin
- Properly set the fenv state in atomic operations on floating point values
- Correctly handle things like _Atomic(_Complex double) which are too large for an atomic cmpxchg on some platforms (this requires working out what 'correctly' means in this context)
- Fix the many remaining corner cases
llvm-svn: 148242
The test includes a FIXME for a related case involving calls; it's a bit more complicated to fix because the RValue class doesn't keep track of alignment.
<rdar://problem/10463337>
llvm-svn: 145862
generic pushDestroy function.
This would reduce the number of useful declarations in
CGTemporaries.cpp to one. Since CodeGenFunction::EmitCXXTemporary
does not deserve its own file, move it to CGCleanup.cpp and delete
CGTemporaries.cpp.
llvm-svn: 145202
need to provide a 'dominating IP' which is guaranteed to
dominate the (de)activation point but which cannot be avoided
along any execution path from the (de)activation point to
the push-point of the cleanup. Using the entry block is
bad mojo.
llvm-svn: 144276
full-expression. Naturally they're inactive before we enter
the block literal expression. This restores the intended
behavior that blocks belong to their enclosing scope.
There's a useful -O0 / compile-time optimization that we're
missing here with activating cleanups following straight-line
code from their inactive beginnings.
llvm-svn: 144268
property references to use a new PseudoObjectExpr
expression which pairs a syntactic form of the expression
with a set of semantic expressions implementing it.
This should significantly reduce the complexity required
elsewhere in the compiler to deal with these kinds of
expressions (e.g. IR generation's special l-value kind,
the static analyzer's Message abstraction), at the lower
cost of specifically dealing with the odd AST structure
of these expressions. It should also greatly simplify
efforts to implement similar language features in the
future, most notably Managed C++'s properties and indexed
properties.
Most of the effort here is in dealing with the various
clients of the AST. I've gone ahead and simplified the
ObjC rewriter's use of properties; other clients, like
IR-gen and the static analyzer, have all the old
complexity *and* all the new complexity, at least
temporarily. Many thanks to Ted for writing and advising
on the necessary changes to the static analyzer.
I've xfailed a small diagnostics regression in the static
analyzer at Ted's request.
llvm-svn: 143867
The OpenCL single precision division operation is only required to
be accurate to 2.5ulp. Annotate the fdiv instruction with metadata
which signals to the backend that an imprecise divide instruction
may be used.
llvm-svn: 143136
This model uses the 'landingpad' instruction, which is pinned to the top of the
landing pad. (A landing pad is defined as the destination of the unwind branch
of an invoke instruction.) All of the information needed to generate the correct
exception handling metadata during code generation is encoded into the
landingpad instruction.
The new 'resume' instruction takes the place of the llvm.eh.resume intrinsic
call. It's lowered in much the same way as the intrinsic is.
llvm-svn: 140049
possible for that to matter right now, but eventually I think we'll
need to unify this better, and then it might. Also, use a more
efficient looping structure.
llvm-svn: 139788
single code path. Use atomic loads and stores where necessary. Load and
store anything of the appropriate size and alignment with primitive
operations instead of going through the call.
llvm-svn: 139580
Use a more portable heuristic for deciding when to emit a single
atomic store; it's possible that I've lost information here, but
I'm not sure how much of the logic before was intentionally arch-specific
and how much was just not quite consistent.
llvm-svn: 139468
emit call results into potentially aliased slots. This allows us
to properly mark indirect return slots as noalias, at the cost
of requiring an extra memcpy when assigning an aggregate call
result into a l-value. It also brings us into compliance with
the x86-64 ABI.
llvm-svn: 138599
hierarchy of delegation, and that EH selector values are meaningful
function-wide (good thing, too, or inlining wouldn't work).
2,3d
1a
hierarchy of delegation and that EH selector values have the same
meaning everywhere in the function instead of being meaningful only
in the context of a specific selector.
This removes the need for routing edges through EH cleanups,
since a cleanup simply always branches to its enclosing scope.
llvm-svn: 137293
- an off-by-one error in emission of irregular array limits for
InitListExprs
- use an EH partial-destruction cleanup within the normal
array-destruction cleanup
- get the branch destinations right for the empty check
Also some refactoring which unfortunately obscures these changes.
llvm-svn: 134890
- Emit default-initialization of arrays that were partially initialized
with initializer lists with a loop, rather than emitting the default
initializer N times;
- support destroying VLAs of non-trivial type, although this is not
yet exposed to users; and
- support the partial destruction of arrays initialized with
initializer lists when an initializer throws an exception.
llvm-svn: 134784
retain/release the temporary object appropriately. Previously, we
would only perform the retain/release operations when the reference
would extend the lifetime of the temporary, but this does the wrong
thing across calls.
llvm-svn: 133620
existence by always threading an edge from the catchall. Not doing
this was previously causing a crash in the very extreme case where
neither the normal cleanup nor the EH catchall was actually reachable:
we would delete the catchall entry block, which would cause us to
delete the entry block of the finally cleanup as well because the
cleanup logic would merge the blocks, which in turn triggered an assert
because later blocks in the finally would still be using values from the
entry. Laziness turns out to be the most elegant solution to the problem.
llvm-svn: 133601
MaterializeTemporaryExpr captures a reference binding to a temporary
value, making explicit that the temporary value (a prvalue) needs to
be materialized into memory so that its address can be used. The
intended AST invariant here is that a reference will always bind to a
glvalue, and MaterializeTemporaryExpr will be used to convert prvalues
into glvalues for that binding to happen. For example, given
const int& r = 1.0;
The initializer of "r" will be a MaterializeTemporaryExpr whose
subexpression is an implicit conversion from the double literal "1.0"
to an integer value.
IR generation benefits most from this new node, since it was
previously guessing (badly) when to materialize temporaries for the
purposes of reference binding. There are likely more refactoring and
cleanups we could perform there, but the introduction of
MaterializeTemporaryExpr fixes PR9565, a case where IR generation
would effectively bind a const reference directly to a bitfield in a
struct. Addresses <rdar://problem/9552231>.
llvm-svn: 133521
they should still be officially __strong for the purposes of errors,
block capture, etc. Make a new bit on variables, isARCPseudoStrong(),
and set this for 'self' and these enumeration-loop variables. Change
the code that was looking for the old patterns to look for this bit,
and change IR generation to find this bit and treat the resulting
variable as __unsafe_unretained for the purposes of init/destroy in
the two places it can come up.
llvm-svn: 133243
Language-design credit goes to a lot of people, but I particularly want
to single out Blaine Garst and Patrick Beard for their contributions.
Compiler implementation credit goes to Argyrios, Doug, Fariborz, and myself,
in no particular order.
llvm-svn: 133103