This is the final patch in the series of patches that improves
BUILD_VECTOR handling on PowerPC. This adds a few peephole optimizations
to remove redundant instructions. It also adds a large test case which
encompasses a large set of code patterns that build vectors - this test
case was the motivator for this series of patches.
Differential Revision: https://reviews.llvm.org/D26066
llvm-svn: 288800
Summary: This patch makes sure FirstCSPop and MBBI never point to DBG_VALUE instructions, which affected the code generated.
Reviewers: mkuper, aprantl, MatzeB
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D27343
llvm-svn: 288794
This pattern turned a vector sqrt/rcp/rsqrt operation of sse_load_f32/f64 into the the scalar instruction for the operation and put undef into the upper bits. For correctness, the resulting code should still perform the sqrt/rcp/rsqrt on the upper bits after the load is extended since that's what the operation asked for. Particularly in the case where the upper bits are 0, in that case we need calculate the sqrt/rcp/rsqrt of the zeroes and keep the result in the upper-bits. This implies we should be using the packed instruction still.
The only test case for this pattern is one I just added so there was no coverage of this.
llvm-svn: 288784
This occurs due to a pattern that uses sse_load_f32/f64 with vector sqrt/rcp/rsqrt operations and turns them into scalar instructions. Perhaps for the case were the upper bits come from undef this is ok. I believe a (vzmovl load64) would do the same thing but those seems to become vzload instead and selectScalarSSELoad doesn't handle that today. In that case we should be performing the vector operation on the zeros in the upper bits which is not equivalent to using a scalar instruction.
I will remove this pattern in a follow up patch. There appears to be no other test content for it.
llvm-svn: 288783
The intrinsics are supposed to pass the upper bits straight through to their output register. This means we need to make sure we still perform the 128-bit load to get those upper bits to pass to give to the instruction since the memory form of the instruction only reads 32 or 64 bits.
llvm-svn: 288781
The sqrtsd instruction only loads 64-bits and writes bits 63:0 with the sqrt result. Bits 127:64 are preserved in the destination register. The semantics of the intrinsic indicate bits 127:64 should come from the intrinsic argument which in this case is a 128-bit load. So the generated code should have a 128-bit load and use a register form of sqrtsd.
llvm-svn: 288780
The intrinsic takes one argument, the lower bits are affected by the operation and the upper bits should be passed through. The instruction itself takes two operands, the high bits of the first operand are passed through and the low bits of the second operand are modified by the operation. To match this to the intrinsic we should pass the single intrinsic input to both operands.
I had to remove the stack folding test for these instructions since they depended on the incorrect behavior. The same register is now used for both inputs so the load can't be folded.
llvm-svn: 288779
This patch adds the starting support for encoding data from the MachO __DWARF segment. The first section supported is the __debug_str section because it is the simplest.
llvm-svn: 288774
Summary:
This patch removes the scalar logical operation alias instructions. We can just use reg class copies and use the normal packed instructions instead. This removes the need for putting these instructions in the execution domain fixing tables as was done recently.
I removed the loadf64_128 and loadf32_128 patterns as DAG combine creates a narrower load for (extractelt (loadv4f32)) before we ever get to isel.
I plan to add similar patterns for AVX512DQ in a future commit to allow use of the larger register class when available.
Reviewers: spatel, delena, zvi, RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D27401
llvm-svn: 288771
The structured CFG is just an aid to inserting exec
mask modification instructions, once that is done
we don't really need it anymore. We also
do not analyze blocks with terminators that
modify exec, so this should only be impacting
true branches.
llvm-svn: 288744
clang -target arm deprecated-asm.s -c
deprecated-asm.s:30:9: warning: use of SP or PC in the list is deprecated
stmia r4!, {r12-r14}
We have to have an option what can disable it.
Patched by Yin Ma!
Reviewers: joey, echristo, weimingz
Subscribers: llvm-commits, aemerson
Differential Revision: https://reviews.llvm.org/D27219
llvm-svn: 288734
The function used to finish off PHIs by adding the relevant basic blocks can
fail if we're aborting and still don't actually have the needed
MachineBasicBlocks. So avoid trying in that case.
llvm-svn: 288727
When the entry block was empty after arg lowering, we were always placing
constants at the end. This is probably hamrless while translating the same
block, but horribly wrong once its terminator has been translated. So switch to
inserting at the beginning.
llvm-svn: 288720
This makes it more similar to the floating-point constant, and also allows for
larger constants to be translated later. There's no real functional change in
this patch though, just syntax updates.
llvm-svn: 288712
Returning 0 (NoReg) from getOrCreateVReg leads to unexpected situations later
in the translation. It's better to return a valid (if undefined) register and
let the rest of the instruction carry on as planned.
llvm-svn: 288709
Summary:
If LAA expands a bound that is loop invariant, but not hoisted out
of the loop body, it used to use that value anyway, causing a
non-domination error, because the memcheck block is of course not
dominated by the scalar loop body. Detect this situation and expand
the SCEV expression instead.
Fixes PR31251
Reviewers: anemet
Subscribers: mzolotukhin, llvm-commits
Differential Revision: https://reviews.llvm.org/D27397
llvm-svn: 288705
This changes the scalar non-intrinsic non-avx roundss/sd instruction
definitions not to read their destination register - allowing partial dependency
breaking.
This fixes PR31143.
Differential Revision: https://reviews.llvm.org/D27323
llvm-svn: 288703
Structure the definitions a bit more like the other classes.
The main change here is to split EXP with the done bit set
to a separate opcode, so we can set mayLoad = 1 so that it won't
be reordered before the other exp stores, since this has the special
constraint that if the done bit is set then this should be the last
exp in she shader.
Previously all exp instructions were inferred to have unmodeled
side effects.
llvm-svn: 288695
so we can stop using DW_OP_bit_piece with the wrong semantics.
The entire back story can be found here:
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20161114/405934.html
The gist is that in LLVM we've been misinterpreting DW_OP_bit_piece's
offset field to mean the offset into the source variable rather than
the offset into the location at the top the DWARF expression stack. In
order to be able to fix this in a subsequent patch, this patch
introduces a dedicated DW_OP_LLVM_fragment operation with the
semantics that we used to apply to DW_OP_bit_piece, which is what we
actually need while inside of LLVM. This patch is complete with a
bitcode upgrade for expressions using the old format. It does not yet
fix the DWARF backend to use DW_OP_bit_piece correctly.
Implementation note: We discussed several options for implementing
this, including reserving a dedicated field in DIExpression for the
fragment size and offset, but using an custom operator at the end of
the expression works just fine and is more efficient because we then
only pay for it when we need it.
Differential Revision: https://reviews.llvm.org/D27361
rdar://problem/29335809
llvm-svn: 288683
We treat bitwise 'not' as a special operation and try not to reduce its all-ones mask.
Presumably, this is because a 'not' may be cheaper than a generic 'xor' or it may get
folded into another logic op if the target has those. However, if we can remove a logic
instruction by changing the xor's constant mask value, that should always be a win.
Note that the IR version of SimplifyDemandedBits() does not treat 'not' as a special-case
currently (although that's marked with a FIXME). So if you run this IR through -instcombine,
you should get the same end result. I'm hoping to add a different backend transform that
will expose this problem though, so I need to solve this first.
Differential Revision: https://reviews.llvm.org/D27356
llvm-svn: 288676
Doing so changes the evaluation order for relocation composition.
Patch By: Daniel Sanders
Reviewers: vkalintiris, atanasyan
Differential Revision: https://reviews.llvm.org/D26401
llvm-svn: 288666
Currently the fast isel code emits an avx1 instruction sequence even with avx512. This is different than normal isel. A follow up commit will fix this.
llvm-svn: 288635
This solves a secondary problem seen in PR6137:
https://llvm.org/bugs/show_bug.cgi?id=6137#c6
This is similar to the bitwise logic op fold added with:
https://reviews.llvm.org/rL287707
And like that patch, I'm artificially restricting the
transform from vector <-> scalar types until we're sure
that the backend can handle that.
llvm-svn: 288584
Previously this pass was using up to 5% compile time in some cases which
is a bit much for what it is doing. The pass featured a full blown
data-flow analysis which in the default configuration was restricted to a
single block.
This rewrites the pass under the assumption that we only ever work on a
single block. This is done in a single pass maintaining a state machine
per general purpose register to catch LOH patterns.
Differential Revision: https://reviews.llvm.org/D27329
llvm-svn: 288561
VSX has instructions lxsiwax/lxsdx that can load 32/64 bit value into VSX register cheaply. That patch makes it known to memory cost model, so the vectorization of the test case in pr30990 is beneficial.
Differential Revision: https://reviews.llvm.org/D26713
llvm-svn: 288560
Summary: Implement custom lowering of SHL_PARTS to enable lowering of left shift with larger than 32-bit shifts.
Reviewers: eliben, majnemer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D27232
llvm-svn: 288541