Commit Graph

901 Commits

Author SHA1 Message Date
Nicolai Haehnle 74127fe8d7 AMDGPU: mark llvm.amdgcn.image.atomic.* as a source of divergence
Summary:
When multiple threads perform an atomic op with the same arguments, they
will usually see different return values.

Reviewers: arsenm, tstellarAMD

Subscribers: arsenm, llvm-commits

Differential Revision: http://reviews.llvm.org/D18101

llvm-svn: 263440
2016-03-14 15:37:18 +00:00
Chandler Carruth 45a9c203a0 [PM/AA] Teach the AAManager how to handle module analyses in addition to
function analyses, and use it to wire up globals-aa to the new pass
manager.

llvm-svn: 263211
2016-03-11 09:15:11 +00:00
Artur Pilipenko 3c8fc57e16 Support arbitrary addrspace pointers in masked load/store intrinsics
This patch fixes the problem which occurs when loop-vectorize tries to use @llvm.masked.load/store intrinsic for a non-default addrspace pointer. It fails with "Calling a function with a bad signature!" assertion in CallInst constructor because it tries to pass a non-default addrspace pointer to the pointer argument which has default addrspace.

The fix is to add pointer type as another overloaded type to @llvm.masked.load/store intrinsics.

Reviewed By: reames

Differential Revision: http://reviews.llvm.org/D17270

llvm-svn: 263158
2016-03-10 20:39:22 +00:00
Chandler Carruth 4c660f7087 [CG] Add a new pass manager printer pass for the old call graph and
actually finish wiring up the old call graph.

There were bugs in the old call graph that hadn't been caught because it
wasn't being tested. It wasn't being tested because it wasn't in the
pipeline system and we didn't have a printing pass to run in tests. This
fixes all of that.

As for why I'm still keeping the old call graph alive its so that I can
port GlobalsAA to the new pass manager with out forking it to work with
the lazy call graph. That's clearly the right eventual design, but it
seems pragmatic to defer that until its necessary. The old call graph
works just fine for GlobalsAA.

llvm-svn: 263104
2016-03-10 11:24:11 +00:00
Chandler Carruth b95def7491 [LCG] Spell the printing pass pipeline name for the lazy call graph
'lcg' instead of just 'cg'.

This makes it consistent with the analysis name of 'lcg'.

No functionality changed.

llvm-svn: 263103
2016-03-10 11:24:06 +00:00
Matthias Braun c31032d607 InstCombine: Restrict computeKnownBits() on all Values to OptLevel > 2
As part of r251146 InstCombine was extended to call computeKnownBits on
every value in the function to determine whether it happens to be
constant. This increases typical compiletime by 1-3% (5% in irgen+opt
time) in my measurements. On the other hand this case did not trigger
once in the whole llvm-testsuite.

This patch introduces the notion of ExpensiveCombines which are only
enabled for OptLevel > 2. I removed the check in InstructionSimplify as
that is called from various places where the OptLevel is not known but
given the rarity of the situation I think a check in InstCombine is
enough.

Differential Revision: http://reviews.llvm.org/D16835

llvm-svn: 263047
2016-03-09 18:47:11 +00:00
Sanjoy Das 84216672da Remove trailing newline from test case; NFC
llvm-svn: 262980
2016-03-09 01:51:44 +00:00
Sanjoy Das 97d19bd95f [SCEV] Slightly generalize getRangeViaFactoring
Building on the previous change, this generalizes
ScalarEvolution::getRangeViaFactoring to work with
{Ext(C?A:B)+k0,+,Ext(C?A:B)+k1} where Ext can be a zero extend, sign
extend or truncate operation, and k0 and k1 are constants.

llvm-svn: 262979
2016-03-09 01:51:02 +00:00
Sanjoy Das d3488c6060 [SCEV] Slightly generalize getRangeViaFactoring
This change generalizes ScalarEvolution::getRangeViaFactoring to work
with {Ext(C?A:B),+,Ext(C?A:B)} where Ext can be a zero extend, sign
extend or truncate operation.

llvm-svn: 262978
2016-03-09 01:50:57 +00:00
Adam Nemet 4896c7a82a [ScopedNoAliasAA] Make test basic.ll less confusing
Summary:
This testcase had me confused.  It made me believe that you can use
alias scopes and alias scopes list interchangeably with alias.scope and
noalias.  Both langref and the other testcase use scope lists so I went
looking.

Turns out using scope directly only happens to work by chance.  When
ScopedNoAliasAAResult::mayAliasInScopes traverses this as a scope list:

!1 = !{!1, !0, !"some scope"}

, the first entry is in fact a scope but only because the scope is
happened to be defined self-referentially to make it unique globally.

The remaining elements in the tuple (!0, !"some scope") are considered
as scopes but AliasScopeNode::getDomain will just bail on those without
any error.

This change avoids this ambiguity in the test but I've also been
wondering if we should issue some sort of a diagnostics.

Reviewers: dexonsmith, hfinkel

Subscribers: mssimpso, llvm-commits

Differential Revision: http://reviews.llvm.org/D16670

llvm-svn: 262841
2016-03-07 17:49:10 +00:00
Philip Reames 146307eb52 [ValueTracking] Remove dead code from an old experiment
This experiment was originally about trying to use facts implied dominating conditions to infer more precise known bits.  While the compile time was found to be acceptable on several large code bases, we never found sufficiently profitable examples to justify turning on the code by default.  Given this, it's time to abandon the experiment.  

Several folks have commented that they've found this useful for experimentation, but nothing has come of those experiments.  Given how easy the patch is to apply, there's no reason to leave the code in tree.  

For anyone interested in further investigation in this area, I recommend finding the summary email I sent on one of the original review threads.  In particular, I now believe the use-list based approach is strictly worse than the dom-tree-walking approach.  

llvm-svn: 262646
2016-03-03 19:44:06 +00:00
Sanjoy Das 724f5cf278 [SCEV] Prove no-overflow via constant ranges
Exploit ScalarEvolution::getRange's newly acquired smartness (since
r262438) by using that to infer nsw and nuw when possible.

llvm-svn: 262639
2016-03-03 18:31:29 +00:00
Sanjoy Das 11ef606f1d [SCEV] Be less eager about demoting zexts to sexts
After r262438 we can have provably positive NSW SCEV expressions whose
zero extensions cannot be simplified (since r262438 makes SCEV better at
computing constant ranges).  This means demoting sexts of positive add
recurrences eagerly can result in an unsimplified zero extension where
we could have had a simplified sign extension.  This change fixes the
issue by teaching SCEV to demote sext of a positive SCEV expression to a
zext only if the sext could not be simplified.

llvm-svn: 262638
2016-03-03 18:31:23 +00:00
Sanjoy Das bf73098472 [SCEV] Make getRange smarter around selects
Have ScalarEvolution::getRange re-consider cases like "{C?A:B,+,C?P:Q}"
by factoring out "C" and computing RangeOf{A,+,P} union RangeOf({B,+,Q})
instead.

The latter can be easier to compute precisely in cases like
"{C?0:N,+,C?1:-1}" N is the backedge taken count of the loop; since in
such cases the latter form simplifies to [0,N+1) union [0,N+1).

llvm-svn: 262438
2016-03-02 00:57:54 +00:00
Hongbin Zheng b8bb0d8813 Another fix the testcase introduced by r261903 - Add the missing matches
llvm-svn: 261971
2016-02-26 03:41:47 +00:00
Hongbin Zheng 8c70ab75a0 Use regex in testcase, do not fail windows bots
llvm-svn: 261922
2016-02-25 19:16:40 +00:00
Hongbin Zheng bc53977a0d Introduce RegionInfoAnalysis, which compute Region Tree in the new PassManager. NFC
Differential Revision: http://reviews.llvm.org/D17571

llvm-svn: 261904
2016-02-25 17:54:25 +00:00
Hongbin Zheng 751337faa7 Introduce DominanceFrontierAnalysis to the new PassManager to compute DominanceFrontier. NFC
Differential Revision: http://reviews.llvm.org/D17570

llvm-svn: 261903
2016-02-25 17:54:15 +00:00
Hongbin Zheng 3f97840721 Introduce analysis pass to compute PostDominators in the new pass manager. NFC
Differential Revision: http://reviews.llvm.org/D17537

llvm-svn: 261902
2016-02-25 17:54:07 +00:00
Hongbin Zheng 66b19fbc4e Revert "Introduce analysis pass to compute PostDominators in the new pass manager. NFC"
This reverts commit a3e5cc6a51ab5ad88d1760c63284294a4e34c018.

llvm-svn: 261891
2016-02-25 16:45:53 +00:00
Hongbin Zheng ad782ce3f7 Revert "Introduce DominanceFrontierAnalysis to the new PassManager to compute DominanceFrontier. NFC"
This reverts commit 109c38b2226a87b0be73fa7a0a8c1a81df20aeb2.

llvm-svn: 261890
2016-02-25 16:45:46 +00:00
Hongbin Zheng 921fabf34b Revert "Introduce RegionInfoAnalysis, which compute Region Tree in the new PassManager. NFC"
This reverts commit 8228b4d374edeb4cc0c5fddf6e1ab876918ee126.

llvm-svn: 261889
2016-02-25 16:45:37 +00:00
Hongbin Zheng 2fa386fd6c Introduce RegionInfoAnalysis, which compute Region Tree in the new PassManager. NFC
Differential Revision: http://reviews.llvm.org/D17571

llvm-svn: 261884
2016-02-25 16:33:26 +00:00
Hongbin Zheng 237197ba63 Introduce DominanceFrontierAnalysis to the new PassManager to compute DominanceFrontier. NFC
Differential Revision: http://reviews.llvm.org/D17570

llvm-svn: 261883
2016-02-25 16:33:15 +00:00
Hongbin Zheng a0273a04f5 Introduce analysis pass to compute PostDominators in the new pass manager. NFC
Differential Revision: http://reviews.llvm.org/D17537

llvm-svn: 261882
2016-02-25 16:33:06 +00:00
Chandler Carruth c1dc384b54 [PM/AA] Wire up TBAA to the new pass manager's registry and test it.
llvm-svn: 261411
2016-02-20 04:04:52 +00:00
Chandler Carruth d6091a0344 [PM/AA] Wire up the scoped-no-alias AA to the new pass manager's
registry and test it.

llvm-svn: 261410
2016-02-20 04:03:06 +00:00
Chandler Carruth 2b3d0446f4 [PM/AA] Wire up SCEVAA to the new pass manager's registry and test it.
llvm-svn: 261409
2016-02-20 04:01:45 +00:00
Chandler Carruth 342c671b66 [PM/AA] Wire up CFLAA to the new pass manager fully, and port one of its
tests over to exercise this code.

This uncovered a few missing bits here and there in the analysis, but
nothing interesting.

llvm-svn: 261404
2016-02-20 03:52:02 +00:00
Chandler Carruth 4f846a5f15 [PM/AA] Port alias analysis evaluator to the new pass manager, and use
it to actually test the new pass manager AA wiring.

This patch was extracted from the (somewhat too large) D12357 and
rebosed on top of the slightly different design of the new pass manager
AA wiring that I just landed. With this we can start testing the AA in
a thorough way with the new pass manager.

Some minor cleanups to the code in the pass was necessitated here, but
otherwise it is a very minimal change.

Differential Revision: http://reviews.llvm.org/D17372

llvm-svn: 261403
2016-02-20 03:46:03 +00:00
Matthew Simpson 921ad01a1d [AArch64] Reduce vector insert/extract cost for Kryo
Differential Revision: http://reviews.llvm.org/D17379

llvm-svn: 261237
2016-02-18 18:35:45 +00:00
Chandler Carruth e5944d97d8 [LCG] Construct an actual call graph with call-edge SCCs nested inside
reference-edge SCCs.

This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.

Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.

An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.

The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.

The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.

There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.

This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.

I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.

Many thanks to the careful review by Sanjoy Das!

Differential Revision: http://reviews.llvm.org/D16802

llvm-svn: 261040
2016-02-17 00:18:16 +00:00
Chandler Carruth 632d208c78 [attrs] Move the norecurse deduction to operate on the node set rather
than the SCC object, and have it scan the instruction stream directly
rather than relying on call records.

This makes the behavior of this routine consistent between libc routines
and LLVM intrinsics for libc routines. We can go and start teaching it
about those being norecurse, but we should behave the same for the
intrinsic and the libc routine rather than differently. I chatted with
James Molloy and the inconsistency doesn't seem intentional and likely
is due to intrinsic calls not being modelled in the call graph analyses.

This also fixes a bug where we would deduce norecurse on optnone
functions, when generally we try to handle optnone functions as-if they
were replaceable and thus unanalyzable.

llvm-svn: 260813
2016-02-13 08:47:51 +00:00
Matt Arsenault fe26def35c AMDGPU: Fix not handling new workitem intrinsics in DivergenceAnalysis
llvm-svn: 260491
2016-02-11 05:32:51 +00:00
Sanjoy Das 1c481f50d2 Add an "addUsedAAAnalyses" helper function
Summary:
Passes that call `getAnalysisIfAvailable<T>` also need to call
`addUsedIfAvailable<T>` in `getAnalysisUsage` to indicate to the
legacy pass manager that it uses `T`.  This contract was being
violated by passes that used `createLegacyPMAAResults`.  This change
fixes this by exposing a helper in AliasAnalysis.h,
`addUsedAAAnalyses`, that is complementary to createLegacyPMAAResults
and does the right thing when called from `getAnalysisUsage`.

Reviewers: chandlerc

Subscribers: mcrosier, llvm-commits

Differential Revision: http://reviews.llvm.org/D17010

llvm-svn: 260183
2016-02-09 01:21:57 +00:00
Wei Mi fc1cab305f This patch is to fix PR26529 caused by r259736.
IndVarSimplify assumes scAddRecExpr to be expanded in literal form instead of
canonical form by calling disableCanonicalMode after it creates SCEVExpander.
When CanonicalMode is disabled, SCEVExpander::expand should always return PHI
node for scAddRecExpr. r259736 broke the assumption.

The fix is to let SCEVExpander::expand skip the reuse Value logic if
CanonicalMode is false.

In addition, Besides IndVarSimplify, LSR pass also calls disableCanonicalMode
before doing rewrite. We can remove the original check of LSRMode in reuse
Value logic and use CanonicalMode instead.

llvm-svn: 260174
2016-02-09 00:07:08 +00:00
Silviu Baranga ea63a7f512 [SCEV][LAA] Re-commit r260085 and r260086, this time with a fix for the memory
sanitizer issue. The PredicatedScalarEvolution's copy constructor
wasn't copying the Generation value, and was leaving it un-initialized.

Original commit message:

[SCEV][LAA] Add no wrap SCEV predicates and use use them to improve strided pointer detection

Summary:
This change adds no wrap SCEV predicates with:
  - support for runtime checking
  - support for expression rewriting:
      (sext ({x,+,y}) -> {sext(x),+,sext(y)}
      (zext ({x,+,y}) -> {zext(x),+,sext(y)}

Note that we are sign extending the increment of the SCEV, even for
the zext case. This is needed to cover the fairly common case where y would
be a (small) negative integer. In order to do this, this change adds two new
flags: nusw and nssw that are applicable to AddRecExprs and permit the
transformations above.

We also change isStridedPtr in LAA to be able to make use of
these predicates. With this feature we should now always be able to
work around overflow issues in the dependence analysis.

Reviewers: mzolotukhin, sanjoy, anemet

Subscribers: mzolotukhin, sanjoy, llvm-commits, rengolin, jmolloy, hfinkel

Differential Revision: http://reviews.llvm.org/D15412

llvm-svn: 260112
2016-02-08 17:02:45 +00:00
Silviu Baranga 41b4973329 Revert r260086 and r260085. They have broken the memory
sanitizer bots.

llvm-svn: 260087
2016-02-08 11:56:15 +00:00
Silviu Baranga 70a98bb9e8 [LoopVersioning] Don't assert when there are no memchecks
We shouldn't assert when there are no memchecks, since we
can have SCEV checks. There is already an assert covering
the case where there are no SCEV checks or memchecks.

This also changes the LAA pointer wrapping versioning test
to use the loop versioning pass (this was how I managed to
trigger the assert in the loop versioning pass).

llvm-svn: 260086
2016-02-08 11:15:29 +00:00
Silviu Baranga a35fadc7c4 [SCEV][LAA] Add no wrap SCEV predicates and use use them to improve strided pointer detection
Summary:
This change adds no wrap SCEV predicates with:
  - support for runtime checking
  - support for expression rewriting:
      (sext ({x,+,y}) -> {sext(x),+,sext(y)}
      (zext ({x,+,y}) -> {zext(x),+,sext(y)}

Note that we are sign extending the increment of the SCEV, even for
the zext case. This is needed to cover the fairly common case where y would
be a (small) negative integer. In order to do this, this change adds two new
flags: nusw and nssw that are applicable to AddRecExprs and permit the
transformations above.

We also change isStridedPtr in LAA to be able to make use of
these predicates. With this feature we should now always be able to
work around overflow issues in the dependence analysis.

Reviewers: mzolotukhin, sanjoy, anemet

Subscribers: mzolotukhin, sanjoy, llvm-commits, rengolin, jmolloy, hfinkel

Differential Revision: http://reviews.llvm.org/D15412

llvm-svn: 260085
2016-02-08 10:45:50 +00:00
Wei Mi a49559befb [SCEV] Try to reuse existing value during SCEV expansion
Current SCEV expansion will expand SCEV as a sequence of operations
and doesn't utilize the value already existed. This will introduce
redundent computation which may not be cleaned up throughly by
following optimizations.

This patch introduces an ExprValueMap which is a map from SCEV to the
set of equal values with the same SCEV. When a SCEV is expanded, the
set of values is checked and reused whenever possible before generating
a sequence of operations.

The original commit triggered regressions in Polly tests. The regressions
exposed two problems which have been fixed in current version.

1. Polly will generate a new function based on the old one. To generate an
instruction for the new function, it builds SCEV for the old instruction,
applies some tranformation on the SCEV generated, then expands the transformed
SCEV and insert the expanded value into new function. Because SCEV expansion
may reuse value cached in ExprValueMap, the value in old function may be
inserted into new function, which is wrong.
   In SCEVExpander::expand, there is a logic to check the cached value to
be used should dominate the insertion point. However, for the above
case, the check always passes. That is because the insertion point is
in a new function, which is unreachable from the old function. However
for unreachable node, DominatorTreeBase::dominates thinks it will be
dominated by any other node.
   The fix is to simply add a check that the cached value to be used in
expansion should be in the same function as the insertion point instruction.

2. When the SCEV is of scConstant type, expanding it directly is cheaper than
reusing a normal value cached. Although in the cached value set in ExprValueMap,
there is a Constant type value, but it is not easy to find it out -- the cached
Value set is not sorted according to the potential cost. Existing reuse logic
in SCEVExpander::expand simply chooses the first legal element from the cached
value set.
   The fix is that when the SCEV is of scConstant type, don't try the reuse
logic. simply expand it.

Differential Revision: http://reviews.llvm.org/D12090

llvm-svn: 259736
2016-02-04 01:27:38 +00:00
Wei Mi 97de385868 Revert r259662, which caused regressions on polly tests.
llvm-svn: 259675
2016-02-03 18:05:57 +00:00
Wei Mi ed133978a0 [SCEV] Try to reuse existing value during SCEV expansion
Current SCEV expansion will expand SCEV as a sequence of operations
and doesn't utilize the value already existed. This will introduce
redundent computation which may not be cleaned up throughly by
following optimizations.

This patch introduces an ExprValueMap which is a map from SCEV to the
set of equal values with the same SCEV. When a SCEV is expanded, the
set of values is checked and reused whenever possible before generating
a sequence of operations.

Differential Revision: http://reviews.llvm.org/D12090

llvm-svn: 259662
2016-02-03 17:05:12 +00:00
James Molloy 6e518a3b50 [DemandedBits] Revert r249687 due to PR26071
This regresses a test in LoopVectorize, so I'll need to go away and think about how to solve this in a way that isn't broken.

From the writeup in PR26071:

What's happening is that ComputeKnownZeroes is telling us that all bits except the LSB are zero. We're then deciding that only the LSB needs to be demanded from the icmp's inputs.

This is where we're wrong - we're assuming that after simplification the bits that were known zero will continue to be known zero. But they're not - during trivialization the upper bits get changed (because an XOR isn't shrunk), so the icmp fails.

The fault is in demandedbits - its contract does clearly state that a non-demanded bit may either be zero or one.

llvm-svn: 259649
2016-02-03 15:05:06 +00:00
Chandler Carruth a4499e9f73 [LCG] Build an edge abstraction for the LazyCallGraph and use it to
differentiate between indirect references to functions an direct calls.

This doesn't do a whole lot yet other than change the print out produced
by the analysis, but it lays the groundwork for a very major change I'm
working on next: teaching the call graph to actually be a call graph,
modeling *both* the indirect reference graph and the call graph
simultaneously. More details on that in the next patch though.

The rest of this is essentially a bunch of over-engineering that won't
be interesting until the next patch. But this also isolates essentially
all of the churn necessary to introduce the edge abstraction from the
very important behavior change necessary in order to separately model
the two graphs. So it should make review of the subsequent patch a bit
easier at the cost of making this patch seem poorly motivated. ;]

Differential Revision: http://reviews.llvm.org/D16038

llvm-svn: 259463
2016-02-02 03:57:13 +00:00
Gerolf Hoflehner 87ddb65fa6 [BasicAA] Fix for missing must alias (D16343)
llvm-svn: 259299
2016-01-30 05:52:53 +00:00
James Molloy 121de0bcfa [DemandedBits] Fix computation of demanded bits for ICmps
The computation of ICmp demanded bits is independent of the individual operand being evaluated. We simply return a mask consisting of the minimum leading zeroes of both operands.

We were incorrectly passing "I" to ComputeKnownBits - this should be "UserI->getOperand(0)". In cases where we were evaluating the 1th operand, we were taking the minimum leading zeroes of it and itself.

This should fix PR26266.

llvm-svn: 258690
2016-01-25 14:49:36 +00:00
James Molloy c5eded5c1e Revert "[ValueTracking] Understand more select patterns in ComputeKnownBits"
This reverts commit r257769. Backing this out because of stage2 failures.

llvm-svn: 257773
2016-01-14 15:49:32 +00:00
James Molloy a9497f53c9 [ValueTracking] Understand more select patterns in ComputeKnownBits
Some patterns of select+compare allow us to know exactly the value of the uppermost bits in the select result. For example:

  %b = icmp ugt i32 %a, 5
  %c = select i1 %b, i32 2, i32 %a

Here we know that %c is bounded by 5, and therefore KnownZero = ~APInt(5).getActiveBits() = ~7.

There are several such patterns, and this patch attempts to understand a reasonable subset of them - namely when the base values are the same (as above), and when they are related by a simple (add nsw), for example (add nsw %a, 4) and %a.

llvm-svn: 257769
2016-01-14 15:23:19 +00:00
Vaivaswatha Nagaraj 68befd7094 [GlobalsAA] Relax condition in checking globals as args to functions
Summary:
Since globals may escape as function arguments (even when they have been 
found to be non-escaping, because of optimizations such as memcpyoptimizer
that replaces stores with memcpy), all arguments to a function are checked
during query to make sure they are identifiable. At that time, also ensure
we return a conservative result only if the arguments don't alias to our global.

Reviewers: hfinkel, jmolloy

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D16140

llvm-svn: 257750
2016-01-14 08:46:45 +00:00