Recommiting after fixing X86 inc/dec chain bug.
* Simplify Consecutive Merge Store Candidate Search
Now that address aliasing is much less conservative, push through
simplified store merging search and chain alias analysis which only
checks for parallel stores through the chain subgraph. This is cleaner
as the separation of non-interfering loads/stores from the
store-merging logic.
When merging stores search up the chain through a single load, and
finds all possible stores by looking down from through a load and a
TokenFactor to all stores visited.
This improves the quality of the output SelectionDAG and the output
Codegen (save perhaps for some ARM cases where we correctly constructs
wider loads, but then promotes them to float operations which appear
but requires more expensive constant generation).
Some minor peephole optimizations to deal with improved SubDAG shapes (listed below)
Additional Minor Changes:
1. Finishes removing unused AliasLoad code
2. Unifies the chain aggregation in the merged stores across code
paths
3. Re-add the Store node to the worklist after calling
SimplifyDemandedBits.
4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is
arbitrary, but seems sufficient to not cause regressions in
tests.
5. Remove Chain dependencies of Memory operations on CopyfromReg
nodes as these are captured by data dependence
6. Forward loads-store values through tokenfactors containing
{CopyToReg,CopyFromReg} Values.
7. Peephole to convert buildvector of extract_vector_elt to
extract_subvector if possible (see
CodeGen/AArch64/store-merge.ll)
8. Store merging for the ARM target is restricted to 32-bit as
some in some contexts invalid 64-bit operations are being
generated. This can be removed once appropriate checks are
added.
This finishes the change Matt Arsenault started in r246307 and
jyknight's original patch.
Many tests required some changes as memory operations are now
reorderable, improving load-store forwarding. One test in
particular is worth noting:
CodeGen/PowerPC/ppc64-align-long-double.ll - Improved load-store
forwarding converts a load-store pair into a parallel store and
a memory-realized bitcast of the same value. However, because we
lose the sharing of the explicit and implicit store values we
must create another local store. A similar transformation
happens before SelectionDAG as well.
Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle
llvm-svn: 293893
* Simplify Consecutive Merge Store Candidate Search
Now that address aliasing is much less conservative, push through
simplified store merging search and chain alias analysis which only
checks for parallel stores through the chain subgraph. This is cleaner
as the separation of non-interfering loads/stores from the
store-merging logic.
When merging stores search up the chain through a single load, and
finds all possible stores by looking down from through a load and a
TokenFactor to all stores visited.
This improves the quality of the output SelectionDAG and the output
Codegen (save perhaps for some ARM cases where we correctly constructs
wider loads, but then promotes them to float operations which appear
but requires more expensive constant generation).
Some minor peephole optimizations to deal with improved SubDAG shapes (listed below)
Additional Minor Changes:
1. Finishes removing unused AliasLoad code
2. Unifies the chain aggregation in the merged stores across code
paths
3. Re-add the Store node to the worklist after calling
SimplifyDemandedBits.
4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is
arbitrary, but seems sufficient to not cause regressions in
tests.
5. Remove Chain dependencies of Memory operations on CopyfromReg
nodes as these are captured by data dependence
6. Forward loads-store values through tokenfactors containing
{CopyToReg,CopyFromReg} Values.
7. Peephole to convert buildvector of extract_vector_elt to
extract_subvector if possible (see
CodeGen/AArch64/store-merge.ll)
8. Store merging for the ARM target is restricted to 32-bit as
some in some contexts invalid 64-bit operations are being
generated. This can be removed once appropriate checks are
added.
This finishes the change Matt Arsenault started in r246307 and
jyknight's original patch.
Many tests required some changes as memory operations are now
reorderable, improving load-store forwarding. One test in
particular is worth noting:
CodeGen/PowerPC/ppc64-align-long-double.ll - Improved load-store
forwarding converts a load-store pair into a parallel store and
a memory-realized bitcast of the same value. However, because we
lose the sharing of the explicit and implicit store values we
must create another local store. A similar transformation
happens before SelectionDAG as well.
Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle
llvm-svn: 293184
Retrying after fixing after removing load-store factoring through
token factors in favor of improved token factor operand pruning
Simplify Consecutive Merge Store Candidate Search
Now that address aliasing is much less conservative, push through
simplified store merging search which only checks for parallel stores
through the chain subgraph. This is cleaner as the separation of
non-interfering loads/stores from the store-merging logic.
Whem merging stores, search up the chain through a single load, and
finds all possible stores by looking down from through a load and a
TokenFactor to all stores visited. This improves the quality of the
output SelectionDAG and generally the output CodeGen (with some
exceptions).
Additional Minor Changes:
1. Finishes removing unused AliasLoad code
2. Unifies the the chain aggregation in the merged stores across
code paths
3. Re-add the Store node to the worklist after calling
SimplifyDemandedBits.
4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is
arbitrary, but seemed sufficient to not cause regressions in
tests.
This finishes the change Matt Arsenault started in r246307 and
jyknight's original patch.
Many tests required some changes as memory operations are now
reorderable. Some tests relying on the order were changed to use
volatile memory operations
Noteworthy tests:
CodeGen/AArch64/argument-blocks.ll -
It's not entirely clear what the test_varargs_stackalign test is
supposed to be asserting, but the new code looks right.
CodeGen/AArch64/arm64-memset-inline.lli -
CodeGen/AArch64/arm64-stur.ll -
CodeGen/ARM/memset-inline.ll -
The backend now generates *worse* code due to store merging
succeeding, as we do do a 16-byte constant-zero store efficiently.
CodeGen/AArch64/merge-store.ll -
Improved, but there still seems to be an extraneous vector insert
from an element to itself?
CodeGen/PowerPC/ppc64-align-long-double.ll -
Worse code emitted in this case, due to the improved store->load
forwarding.
CodeGen/X86/dag-merge-fast-accesses.ll -
CodeGen/X86/MergeConsecutiveStores.ll -
CodeGen/X86/stores-merging.ll -
CodeGen/Mips/load-store-left-right.ll -
Restored correct merging of non-aligned stores
CodeGen/AMDGPU/promote-alloca-stored-pointer-value.ll -
Improved. Correctly merges buffer_store_dword calls
CodeGen/AMDGPU/si-triv-disjoint-mem-access.ll -
Improved. Sidesteps loading a stored value and
merges two stores
CodeGen/X86/pr18023.ll -
This test has been removed, as it was asserting incorrect
behavior. Non-volatile stores *CAN* be moved past volatile loads,
and now are.
CodeGen/X86/vector-idiv.ll -
CodeGen/X86/vector-lzcnt-128.ll -
It's basically impossible to tell what these tests are actually
testing. But, looks like the code got better due to the memory
operations being recognized as non-aliasing.
CodeGen/X86/win32-eh.ll -
Both loads of the securitycookie are now merged.
Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle
Subscribers: wdng, nhaehnle, nemanjai, arsenm, weimingz, niravd, RKSimon, aemerson, qcolombet, dsanders, resistor, tstellarAMD, t.p.northover, spatel
Differential Revision: https://reviews.llvm.org/D14834
llvm-svn: 289659
Retrying after fixing overly aggressive load-store forwarding optimization.
Simplify Consecutive Merge Store Candidate Search
Now that address aliasing is much less conservative, push through
simplified store merging search which only checks for parallel stores
through the chain subgraph. This is cleaner as the separation of
non-interfering loads/stores from the store-merging logic.
Whem merging stores, search up the chain through a single load, and
finds all possible stores by looking down from through a load and a
TokenFactor to all stores visited. This improves the quality of the
output SelectionDAG and generally the output CodeGen (with some
exceptions).
Additional Minor Changes:
1. Finishes removing unused AliasLoad code
2. Unifies the the chain aggregation in the merged stores across
code paths
3. Re-add the Store node to the worklist after calling
SimplifyDemandedBits.
4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is
arbitrary, but seemed sufficient to not cause regressions in
tests.
This finishes the change Matt Arsenault started in r246307 and
jyknight's original patch.
Many tests required some changes as memory operations are now
reorderable. Some tests relying on the order were changed to use
volatile memory operations
Noteworthy tests:
CodeGen/AArch64/argument-blocks.ll -
It's not entirely clear what the test_varargs_stackalign test is
supposed to be asserting, but the new code looks right.
CodeGen/AArch64/arm64-memset-inline.lli -
CodeGen/AArch64/arm64-stur.ll -
CodeGen/ARM/memset-inline.ll -
The backend now generates *worse* code due to store merging
succeeding, as we do do a 16-byte constant-zero store efficiently.
CodeGen/AArch64/merge-store.ll -
Improved, but there still seems to be an extraneous vector insert
from an element to itself?
CodeGen/PowerPC/ppc64-align-long-double.ll -
Worse code emitted in this case, due to the improved store->load
forwarding.
CodeGen/X86/dag-merge-fast-accesses.ll -
CodeGen/X86/MergeConsecutiveStores.ll -
CodeGen/X86/stores-merging.ll -
CodeGen/Mips/load-store-left-right.ll -
Restored correct merging of non-aligned stores
CodeGen/AMDGPU/promote-alloca-stored-pointer-value.ll -
Improved. Correctly merges buffer_store_dword calls
CodeGen/AMDGPU/si-triv-disjoint-mem-access.ll -
Improved. Sidesteps loading a stored value and
merges two stores
CodeGen/X86/pr18023.ll -
This test has been removed, as it was asserting incorrect
behavior. Non-volatile stores *CAN* be moved past volatile loads,
and now are.
CodeGen/X86/vector-idiv.ll -
CodeGen/X86/vector-lzcnt-128.ll -
It's basically impossible to tell what these tests are actually
testing. But, looks like the code got better due to the memory
operations being recognized as non-aliasing.
CodeGen/X86/win32-eh.ll -
Both loads of the securitycookie are now merged.
Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle
Subscribers: wdng, nhaehnle, nemanjai, arsenm, weimingz, niravd, RKSimon, aemerson, qcolombet, dsanders, resistor, tstellarAMD, t.p.northover, spatel
Differential Revision: https://reviews.llvm.org/D14834
llvm-svn: 289221
Retrying after upstream changes.
Simplify Consecutive Merge Store Candidate Search
Now that address aliasing is much less conservative, push through
simplified store merging search which only checks for parallel stores
through the chain subgraph. This is cleaner as the separation of
non-interfering loads/stores from the store-merging logic.
Whem merging stores, search up the chain through a single load, and
finds all possible stores by looking down from through a load and a
TokenFactor to all stores visited. This improves the quality of the
output SelectionDAG and generally the output CodeGen (with some
exceptions).
Additional Minor Changes:
1. Finishes removing unused AliasLoad code
2. Unifies the the chain aggregation in the merged stores across
code paths
3. Re-add the Store node to the worklist after calling
SimplifyDemandedBits.
4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is
arbitrary, but seemed sufficient to not cause regressions in
tests.
This finishes the change Matt Arsenault started in r246307 and
jyknight's original patch.
Many tests required some changes as memory operations are now
reorderable. Some tests relying on the order were changed to use
volatile memory operations
Noteworthy tests:
CodeGen/AArch64/argument-blocks.ll -
It's not entirely clear what the test_varargs_stackalign test is
supposed to be asserting, but the new code looks right.
CodeGen/AArch64/arm64-memset-inline.lli -
CodeGen/AArch64/arm64-stur.ll -
CodeGen/ARM/memset-inline.ll -
The backend now generates *worse* code due to store merging
succeeding, as we do do a 16-byte constant-zero store efficiently.
CodeGen/AArch64/merge-store.ll -
Improved, but there still seems to be an extraneous vector insert
from an element to itself?
CodeGen/PowerPC/ppc64-align-long-double.ll -
Worse code emitted in this case, due to the improved store->load
forwarding.
CodeGen/X86/dag-merge-fast-accesses.ll -
CodeGen/X86/MergeConsecutiveStores.ll -
CodeGen/X86/stores-merging.ll -
CodeGen/Mips/load-store-left-right.ll -
Restored correct merging of non-aligned stores
CodeGen/AMDGPU/promote-alloca-stored-pointer-value.ll -
Improved. Correctly merges buffer_store_dword calls
CodeGen/AMDGPU/si-triv-disjoint-mem-access.ll -
Improved. Sidesteps loading a stored value and
merges two stores
CodeGen/X86/pr18023.ll -
This test has been removed, as it was asserting incorrect
behavior. Non-volatile stores *CAN* be moved past volatile loads,
and now are.
CodeGen/X86/vector-idiv.ll -
CodeGen/X86/vector-lzcnt-128.ll -
It's basically impossible to tell what these tests are actually
testing. But, looks like the code got better due to the memory
operations being recognized as non-aliasing.
CodeGen/X86/win32-eh.ll -
Both loads of the securitycookie are now merged.
CodeGen/AMDGPU/vgpr-spill-emergency-stack-slot-compute.ll -
This test appears to work but no longer exhibits the spill behavior.
Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle
Subscribers: wdng, nhaehnle, nemanjai, arsenm, weimingz, niravd, RKSimon, aemerson, qcolombet, dsanders, resistor, tstellarAMD, t.p.northover, spatel
Differential Revision: https://reviews.llvm.org/D14834
llvm-svn: 284151
Simplify Consecutive Merge Store Candidate Search
Now that address aliasing is much less conservative, push through
simplified store merging search which only checks for parallel stores
through the chain subgraph. This is cleaner as the separation of
non-interfering loads/stores from the store-merging logic.
Whem merging stores, search up the chain through a single load, and
finds all possible stores by looking down from through a load and a
TokenFactor to all stores visited. This improves the quality of the
output SelectionDAG and generally the output CodeGen (with some
exceptions).
Additional Minor Changes:
1. Finishes removing unused AliasLoad code
2. Unifies the the chain aggregation in the merged stores across
code paths
3. Re-add the Store node to the worklist after calling
SimplifyDemandedBits.
4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is
arbitrary, but seemed sufficient to not cause regressions in
tests.
This finishes the change Matt Arsenault started in r246307 and
jyknight's original patch.
Many tests required some changes as memory operations are now
reorderable. Some tests relying on the order were changed to use
volatile memory operations
Noteworthy tests:
CodeGen/AArch64/argument-blocks.ll -
It's not entirely clear what the test_varargs_stackalign test is
supposed to be asserting, but the new code looks right.
CodeGen/AArch64/arm64-memset-inline.lli -
CodeGen/AArch64/arm64-stur.ll -
CodeGen/ARM/memset-inline.ll -
The backend now generates *worse* code due to store merging
succeeding, as we do do a 16-byte constant-zero store efficiently.
CodeGen/AArch64/merge-store.ll -
Improved, but there still seems to be an extraneous vector insert
from an element to itself?
CodeGen/PowerPC/ppc64-align-long-double.ll -
Worse code emitted in this case, due to the improved store->load
forwarding.
CodeGen/X86/dag-merge-fast-accesses.ll -
CodeGen/X86/MergeConsecutiveStores.ll -
CodeGen/X86/stores-merging.ll -
CodeGen/Mips/load-store-left-right.ll -
Restored correct merging of non-aligned stores
CodeGen/AMDGPU/promote-alloca-stored-pointer-value.ll -
Improved. Correctly merges buffer_store_dword calls
CodeGen/AMDGPU/si-triv-disjoint-mem-access.ll -
Improved. Sidesteps loading a stored value and merges two stores
CodeGen/X86/pr18023.ll -
This test has been removed, as it was asserting incorrect
behavior. Non-volatile stores *CAN* be moved past volatile loads,
and now are.
CodeGen/X86/vector-idiv.ll -
CodeGen/X86/vector-lzcnt-128.ll -
It's basically impossible to tell what these tests are actually
testing. But, looks like the code got better due to the memory
operations being recognized as non-aliasing.
CodeGen/X86/win32-eh.ll -
Both loads of the securitycookie are now merged.
CodeGen/AMDGPU/vgpr-spill-emergency-stack-slot-compute.ll -
This test appears to work but no longer exhibits the spill
behavior.
Reviewers: arsenm, hfinkel, tstellarAMD, nhaehnle, jyknight
Subscribers: wdng, nhaehnle, nemanjai, arsenm, weimingz, niravd, RKSimon, aemerson, qcolombet, resistor, tstellarAMD, t.p.northover, spatel
Differential Revision: https://reviews.llvm.org/D14834
llvm-svn: 282600
See r230786 and r230794 for similar changes to gep and load
respectively.
Call is a bit different because it often doesn't have a single explicit
type - usually the type is deduced from the arguments, and just the
return type is explicit. In those cases there's no need to change the
IR.
When that's not the case, the IR usually contains the pointer type of
the first operand - but since typed pointers are going away, that
representation is insufficient so I'm just stripping the "pointerness"
of the explicit type away.
This does make the IR a bit weird - it /sort of/ reads like the type of
the first operand: "call void () %x(" but %x is actually of type "void
()*" and will eventually be just of type "ptr". But this seems not too
bad and I don't think it would benefit from repeating the type
("void (), void () * %x(" and then eventually "void (), ptr %x(") as has
been done with gep and load.
This also has a side benefit: since the explicit type is no longer a
pointer, there's no ambiguity between an explicit type and a function
that returns a function pointer. Previously this case needed an explicit
type (eg: a function returning a void() function was written as
"call void () () * @x(" rather than "call void () * @x(" because of the
ambiguity between a function returning a pointer to a void() function
and a function returning void).
No ambiguity means even function pointer return types can just be
written alone, without writing the whole function's type.
This leaves /only/ the varargs case where the explicit type is required.
Given the special type syntax in call instructions, the regex-fu used
for migration was a bit more involved in its own unique way (as every
one of these is) so here it is. Use it in conjunction with the apply.sh
script and associated find/xargs commands I've provided in rr230786 to
migrate your out of tree tests. Do let me know if any of this doesn't
cover your cases & we can iterate on a more general script/regexes to
help others with out of tree tests.
About 9 test cases couldn't be automatically migrated - half of those
were functions returning function pointers, where I just had to manually
delete the function argument types now that we didn't need an explicit
function type there. The other half were typedefs of function types used
in calls - just had to manually drop the * from those.
import fileinput
import sys
import re
pat = re.compile(r'((?:=|:|^|\s)call\s(?:[^@]*?))(\s*$|\s*(?:(?:\[\[[a-zA-Z0-9_]+\]\]|[@%](?:(")?[\\\?@a-zA-Z0-9_.]*?(?(3)"|)|{{.*}}))(?:\(|$)|undef|inttoptr|bitcast|null|asm).*$)')
addrspace_end = re.compile(r"addrspace\(\d+\)\s*\*$")
func_end = re.compile("(?:void.*|\)\s*)\*$")
def conv(match, line):
if not match or re.search(addrspace_end, match.group(1)) or not re.search(func_end, match.group(1)):
return line
return line[:match.start()] + match.group(1)[:match.group(1).rfind('*')].rstrip() + match.group(2) + line[match.end():]
for line in sys.stdin:
sys.stdout.write(conv(re.search(pat, line), line))
llvm-svn: 235145
Similar to gep (r230786) and load (r230794) changes.
Similar migration script can be used to update test cases, which
successfully migrated all of LLVM and Polly, but about 4 test cases
needed manually changes in Clang.
(this script will read the contents of stdin and massage it into stdout
- wrap it in the 'apply.sh' script shown in previous commits + xargs to
apply it over a large set of test cases)
import fileinput
import sys
import re
rep = re.compile(r"(getelementptr(?:\s+inbounds)?\s*\()((<\d*\s+x\s+)?([^@]*?)(|\s*addrspace\(\d+\))\s*\*(?(3)>)\s*)(?=$|%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|zeroinitializer|<|\[\[[a-zA-Z]|\{\{)", re.MULTILINE | re.DOTALL)
def conv(match):
line = match.group(1)
line += match.group(4)
line += ", "
line += match.group(2)
return line
line = sys.stdin.read()
off = 0
for match in re.finditer(rep, line):
sys.stdout.write(line[off:match.start()])
sys.stdout.write(conv(match))
off = match.end()
sys.stdout.write(line[off:])
llvm-svn: 232184
Essentially the same as the GEP change in r230786.
A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)
import fileinput
import sys
import re
pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")
for line in sys.stdin:
sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7649
llvm-svn: 230794