sh_info links to a section, therefore SHF_INFO_LINK should be set as GNU as
does. The issue has been benign because linkers kindly combines relocation
sections w/ and w/o the flag.
Add methods for loop unrolling to the OpenMPIRBuilder class and use them in Clang if `-fopenmp-enable-irbuilder` is enabled. The unrolling methods are:
* `unrollLoopFull`
* `unrollLoopPartial`
* `unrollLoopHeuristic`
`unrollLoopPartial` and `unrollLoopHeuristic` can use compiler heuristics to automatically determine the unroll factor. If possible, that is if no CanonicalLoopInfo is required to pass to another method, metadata for LLVM's LoopUnrollPass is added. Otherwise the unroll factor is determined using the same heurstics as user by LoopUnrollPass. Not requiring a CanonicalLoopInfo, especially with `unrollLoopHeuristic` allows greater flexibility.
With full unrolling and partial unrolling with known unroll factor, instead of duplicating instructions by the OpenMPIRBuilder, the full unroll is still delegated to the LoopUnrollPass. In case of partial unrolling the loop is first tiled using the existing `tileLoops` methods, then the inner loop fully unrolled using the same mechanism.
Reviewed By: jdoerfert, kiranchandramohan
Differential Revision: https://reviews.llvm.org/D107764
For CSSPGO, turn on `sample-profile-use-preinliner` by default. This simplifies the use of llvm-profgen preinliner as it's now simply driven by ContextShouldBeInlined flag for each context profile without needing extra compiler switch.
Note that llvm-profgen's preinliner is still off by default, under switch `csspgo-preinliner`.
Differential Revision: https://reviews.llvm.org/D109111
Added opt option -print-pipeline-passes to print a -passes compatible
string describing the built pass pipeline.
As an example:
$ opt -enable-new-pm=1 -adce -licm -simplifycfg -o /dev/null /dev/null -print-pipeline-passes
verify,function(adce),function(loop-mssa(licm)),function(simplifycfg<bonus-inst-threshold=1;no-forward-switch-cond;no-switch-to-lookup;keep-loops;no-hoist-common-insts;no-sink-common-insts>),verify,BitcodeWriterPass
At the moment this is best-effort only and there are some known
limitations:
- Not all passes accepting parameters will print their parameters
(currently only implemented for simplifycfg).
- Some ClassName to pass-name mappings are not unique.
- Some ClassName to pass-name mappings are missing (e.g.
BitcodeWriterPass).
Differential Revision: https://reviews.llvm.org/D108298
Added opt option -print-pipeline-passes to print a -passes compatible
string describing the built pass pipeline.
As an example:
$ opt -enable-new-pm=1 -adce -licm -simplifycfg -o /dev/null /dev/null -print-pipeline-passes
verify,function(adce),function(loop-mssa(licm)),function(simplifycfg<bonus-inst-threshold=1;no-forward-switch-cond;no-switch-to-lookup;keep-loops;no-hoist-common-insts;no-sink-common-insts>),verify,BitcodeWriterPass
At the moment this is best-effort only and there are some known
limitations:
- Not all passes accepting parameters will print their parameters
(currently only implemented for simplifycfg).
- Some ClassName to pass-name mappings are not unique.
- Some ClassName to pass-name mappings are missing (e.g.
BitcodeWriterPass).
This is a case I'd missed in 6a8237. The odd bit here is that missing the edge removal update seems to produce MemorySSA which verifies, but is still corrupt in a way which bothers following passes. I wasn't able to reduce a single pass test case, which is why the reported test case is taken as is.
Differential Revision: https://reviews.llvm.org/D109068
I believe, the profitability reasoning here is correct
"sub"reg is already located within the 0'th subreg of wider reg,
so if we have suvector insertion at index 0 into undef,
then it's always free do to.
After this, D109065 finally avoids the regression in D108382.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D109074
Similar to D97585.
D25456 used `S_ATTR_LIVE_SUPPORT` to ensure the data variable will be retained
or discarded as a unit with the counter variable, so llvm.compiler.used is
sufficient. It allows ld to dead strip unneeded profc and profd variables.
Reviewed By: vsk
Differential Revision: https://reviews.llvm.org/D105445
This adds lowering of the llvm.fptosi.sat and llvm.fptoui.sat intinsics,
selecting a VCVT instruction which under MVE will inherently perform the
saturate.
Differential Revision: https://reviews.llvm.org/D107865
There's a silent bug in our reasoning about zero strides. We assume that having a single static exit implies that if that exit is not taken, then the loop must be infinite. This ignores the potential for abnormal exits via exceptions. Consider the following example:
for (uint_8 i = 0; i < 1; i += 0) {
throw_on_thousandth_call();
}
Our reasoning is such that we'd conclude this loop can't take the backedge as that would lead to a (presumed) infinite loop.
In practice, this is a silent bug because the loopIsFiniteByAssumption returns false strictly more often than the loopHaNoAbnormalExits property. We could reasonable want to change that in the future, so fixing the codeflow now is worthwhile.
Differential Revision: https://reviews.llvm.org/D109029
Currently, the truncate selection dag node is expanded as a bitwise AND plus compare to 1. This change enables scalar comparison in the pattern if the truncate node is uniform.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D108925
As mentioned in D108833, the logic for figuring out if a backedge is dead was somewhat interwoven with the SCEV based logic and the symbolic eval logic. This is my attempt at making the code easier to follow.
Note that this is only NFC after the work done in 29fa37ec. Thanks to Nikita for catching that case.
Differential Revision: https://reviews.llvm.org/D108848
With opaque pointers, no actual bitcasts will be present. Instead,
there will be a mismatch between the call FunctionType and the
function ValueType. Change the code to collect CallBases
specifically (rather than general Uses) and compare these types.
RAUW is no longer performed, as there would no longer be any
bitcasts that can be RAUWd.
Differential Revision: https://reviews.llvm.org/D108880
We'd special cased this logic to use pointer types for non-integral pointers, but there's no reason we can't do that for all pointer types. Doing it this was has a few advantages:
a) The code itself becomes more straight forward, and easier to test.
b) We avoid introducing ptrtoint into programs which didn't have them in the source.
c) The resulting codegen is easier to analyze and simplify (mostly due to lack of ptrtoint).
Note that there are some test diffs, but a) running them through instcombine helps a ton, and b) there's enough missing obvious transforms on both before and after IR that it's clear this isn't performance sensitive.
This is mostly motivated by cleaning up mentions of non-integrals to have a clearer idea of what we actually need to support.
Differential Revision: https://reviews.llvm.org/D104662
If the true and false values are the same, we don't need a SELECT_CC.
This would normally be folded before a select is legalized to
select_cc. The test case exploits the late legalization of vscale
to trigger a case where they become identical after legalization.
This works around an issue found on a test case in D107957. In that
case the true/false values were both eventually 0 and the select was
used by a vector AVL operand. The select_cc got expanded to control
flow and a phi, but the phi inputs were both copies from X0. MachineIR
optimizations simplified this to a single copy from X0 going into the
vector instruction. This became the input of a vsetvli after vsetvli
insertion. Then register coalescing folded the copy into the vsetvli.
X0 as the source of a vsetvli is a special encoding and should not be
created by coalesing. We need to fix our vsetvli handling to make sure
this can never happen any other way, but removing the unneeded select
is still a worthwhile optimization.
With the context split work, the context-based (an array of strings) sorting performed at profile load time is way more expansive than single-string-based sorting. This is likely due to auxiliary operations done on each array element, such as indirect references, std::min operations, also likely cache misses. In this change I'm presorting profiles during profile generation time to avoid sorting at compile time.
Compared to the previous context-split work, this effectively cuts down compile time by 20% for one of our large services and brings us closer to non-CS build, with still a small gap in build time.
Reviewed By: wenlei, wmi
Differential Revision: https://reviews.llvm.org/D109036
Store the used element type in the InductionDescriptor. For typed
pointers, it remains the pointer element type. For opaque pointers,
we always use an i8 element type, such that the step is a simple
offset.
A previous version of this patch instead tried to guess the element
type from an induction GEP, but this is not reliable, as the GEP
may be hidden (see @both in iv_outside_user.ll).
Differential Revision: https://reviews.llvm.org/D104795
This extends D108921 into a generic rule applied to constructing ExitLimits along all paths. The remaining paths (primarily howFarToZero) don't have the same reasoning about UB sensitivity as the howManyLessThan ones did. Instead, the remain cause for max counts being more precise than exact counts is that we apply context sensitive loop guards on the max path, and not on the exact path. That choice is mildly suspect, but out of scope of this patch.
The MVETailPredication.cpp change deserves a bit of explanation. We were previously figuring out that two SCEVs happened to be equal because the happened to be identical. When we optimized one with context sensitive information, but not the other, we lost the ability to prove them equal. So, cover this case by subtracting and then applying loop guards again. Without this, we see changes in test/CodeGen/Thumb2/mve-blockplacement.ll
Differential Revision: https://reviews.llvm.org/D109015
This is used by BOLT to do patching of DebugInfo section, and Line Table. Directly by using find, and through getAttrFieldOffsetForUnit.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D107874
isFreeToInvert allows min/max with 'not' on both operands,
so easing the argument restriction catches the case where
that operand has one use.
We already handle the sub-patterns when there are less uses:
https://alive2.llvm.org/ce/z/8Jatm_
...but this is another step towards parity with the
equivalent icmp+select idioms ( D98152 ).
Differential Revision: https://reviews.llvm.org/D109059
This mimics the code for the corresponding cmp-select idiom.
This also prevents an infinite loop because isFreeToInvert
does not match constant expressions.
So this patch solves the same problem as D108814 and obsoletes
it, but my main motivation is to enhance the pattern matching
to allow more invertible ops. That change will be a follow-up
patch on top of this one.
Differential Revision: https://reviews.llvm.org/D109058
The OutermostLoad condition is supposed to strip the outermost
DW_OP_deref operation because dbg.declares are implicitly
indirect. This patch makes sure the heuristic is only applied to
dbg.declare intrinsics and only if the outermost instruction is a
load.
This was found while qualifying the latest Swift compiler rebranch.
rdar://82037764
libdevice bitcode provided by NVIDIA is linked with clang/LLVM-generated IR
which uses nvptx*-nvidia-cuda triple. We need to mark them as compatible.
Differential Revision: https://reviews.llvm.org/D108835
This is part one of a couple of patches to fully rename these methods.
I've made the mistake of assuming that these indexes are for parameters
multiple times, but actually they're based off of a weird indexing
scheme AttributeList::AttrIndex where 0 is the return value and ~0 is
the function. Hopefully renaming these methods will make this clearer.
Ideally users should use more specific methods like
AttributeList::getFnAttr().
This patch simply adds the name that we want in the end. This is so the
removal of the methods with the original names happens in a separate
change to make it easier for downstream users.
This touches all relevant methods in AttributeList, CallBase, and Function.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D108788
Previously extra wide v4f32 to v4f64 extending loads would be legalized to v2f32
to v2f64 extending loads, which would then be scalarized by legalization. (v2f32
to v2f64 extending loads not produced by legalization were already being emitted
correctly.) Instead, mark v2f32 to v2f64 extending loads as legal and explicitly
lower them using promote_low. This regresses the addressing modes supported for
the extloads not produced by legalization, but that's a fine trade off for now.
Differential Revision: https://reviews.llvm.org/D108496
When we have an any-extending FPR bank load, none of the tablegen patterns
match and we fall back to the C++ selector. Like with the truncating stores
that were fixed recently, the C++ wasn't able to handle it and ended up
generating invalid copies between different size regclasses.
This change adds handling for this case, splitting the load into a regular
load and a SUBREG_TO_REG to extend it into the original wide destination reg.
Adding the compiler support of MD5 CS profile based on pervious context split work D107299. A MD5 CS profile is about 40% smaller than the string-based extbinary profile. As a result, the compilation is 15% faster.
There are a few conversion from real names to md5 names that have been made on the sample loader and context tracker side to get it work.
Reviewed By: wenlei, wmi
Differential Revision: https://reviews.llvm.org/D108342
The load store vectorizer currently uses isNoAlias() to determine
whether memory-accessing instructions should prevent vectorization.
However, this only works for loads and stores. Additionally, a
couple of intrinsics like assume are special-cased to be ignored.
Instead use getModRefInfo() to generically determine whether the
instruction accesses/modifies the relevant location. This will
automatically handle all inaccessiblememonly intrinsics correctly
(as well as other calls that don't modref for other reasons).
This requires generalizing the code a bit, as it was previously
only considering loads and stored in particular.
Differential Revision: https://reviews.llvm.org/D109020
We have a large compile showing occasional non-deterministic behavior
that is due to DIArgList not being properly uniqued in some cases. I
tracked this down to handleChangedOperands, for which there is a custom
implementation for DIArgList, that does not take care of re-uniquing
after updating the DIArgList Args, unlike the default version of
handleChangedOperands for MDNode.
Since the Args in the DIArgList form the key for the store, this seems
to be occasionally breaking the lookup in that DenseSet. Specifically,
when invoking DIArgList::get() from replaceVariableLocationOp, very
occasionally it returns a new DIArgList object, when one already exists
having the same exact Args pointers. This in turn causes a subsequent
call to Instruction::isIdenticalToWhenDefined on those two otherwise
identical DIArgList objects during a later pass to return false, leading
to different IR in those rare cases.
I modified DIArgList::handleChangedOperands to perform similar
re-uniquing as the MDNode version used by other metadata node types.
This also necessitated a change to the context destructor, since in some
cases we end up with DIArgList as distinct nodes: DIArgList is the only
metadata node type to have a custom dropAllReferences, so we need to
invoke that version on DIArgList in the DistinctMDNodes store to clean
it up properly.
Differential Revision: https://reviews.llvm.org/D108968
If MatchRegexp is an invalid regex, an error message will be printed
using SourceManager::PrintMessage via AddRegExToRegEx.
PrintMessage relies on the input being a StringRef into a string managed
by SourceManager. At the moment, a StringRef to a std::string
allocated in the caller of AddRegExToRegEx is passed. If the regex is
invalid, this StringRef is passed to PrintMessage, where it will crash,
because it does not point to a string managed via SourceMgr.
This patch fixes the crash by turning MatchRegexp into a StringRef If
we use MatchStr, we directly use that StringRef, which points into a
string from SourceMgr. Otherwise, MatchRegexp gets assigned
Format.getWildcardRegex(), which returns a std::string. To extend the
lifetime, assign it to a std::string variable WildcardRegexp and assign
MatchRegexp to a stringref to WildcardRegexp. WildcardRegexp should
always be valid, so we should never have to print an error message
via the SoureMgr I think.
Fixes PR49319.
Reviewed By: thopre
Differential Revision: https://reviews.llvm.org/D109050