With this, `clang-cl /source-charset:utf-16 test.cc` now prints `invalid
value 'utf-16' in '/source-charset:utf-16'` instead of `invalid value
'utf-16' in '-finput-charset=utf-16'` before, and several other clang-cl
flags produce much less confusing output as well.
Fixes PR29106.
Since an arg and its alias can have different arg types (joined vs not)
and different values (because of AliasArgs<>), I chose to give the Alias
its own Arg object. For convenience, I just store the alias directly in
the unaliased arg – there aren't many arg objects at runtime, so that
seems ok.
Finally, I changed Arg::getAsString() to use the alias's representation
if it's present – that function was already documented as being the
suitable function for diagnostics, and most callers already used it for
diagnostics.
Implementation-wise, Arg::accept() previously used to parse things as
the unaliased option. The core of that switch is now extracted into a
new function acceptInternal() which parses as the _aliased_ option, and
the previously-intermingled unaliasing is now done as an explicit step
afterwards.
(This also changes one place in lld that didn't use getAsString() for
diagnostics, so that that one place now also prints the flag as the user
wrote it, not as it looks after it went through unaliasing.)
Differential Revision: https://reviews.llvm.org/D64253
llvm-svn: 365413
This fixes an 8-year-old regression. r105763 made it so that aliases
always refer to the unaliased option – but it missed the "joined" branch
of JoinedOrSeparate flags. (r162231 then made the Args classes
non-virtual, and r169344 moved them from clang to llvm.)
Back then, there was no JoinedOrSeparate flag that was an alias, so it
wasn't observable. Now /U in CLCompatOptions is a JoinedOrSeparate alias
in clang, and warn_slash_u_filename incorrectly used the aliased arg id
(using the unaliased one isn't really a regression since that warning
checks if the undefined macro contains slash or backslash and only then
emits the warning – and no valid use will pass "-Ufoo/bar" or similar).
Also, lld has many JoinedOrSeparate aliases, and due to this bug it had
to explicitly call `getUnaliasedOption()` in a bunch of places, even
though that shouldn't be necessary by design. After this fix in Option,
these calls really don't have an effect any more, so remove them.
No intended behavior change.
(I accidentally fixed this bug while working on PR29106 but then
wondered why the warn_slash_u_filename broke. When I figured it out, I
thought it would make sense to land this in a separate commit.)
Differential Revision: https://reviews.llvm.org/D64156
llvm-svn: 365186
This matches the wasm lld and GNU ld behavior.
The ELF linker has special handling for bitcode archives but if that
doesn't kick in we probably want to error out rather than silently
ignore the library.
Differential Revision: https://reviews.llvm.org/D63781
llvm-svn: 364998
Use -fsave-optimization-record=<format> to specify a different format
than the default, which is YAML.
For now, only YAML is supported.
llvm-svn: 363573
This patch adds new command line option `--undefined-glob` to lld.
That option is a variant of `--undefined` but accepts wildcard
patterns so that all symbols that match with a given pattern are
handled as if they were given by `-u`.
`-u foo` is to force resolve symbol foo if foo is not a defined symbol
and there's a static archive that contains a definition of symbol foo.
Now, you can specify a wildcard pattern as an argument for `--undefined-glob`.
So, if you want to include all JNI symbols (which start with "Java_"), you
can do that by passing `--undefined-glob "Java_*"` to the linker, for example.
In this patch, I use the same glob pattern matcher as the version script
processor is using, so it does not only support `*` but also `?` and `[...]`.
Differential Revision: https://reviews.llvm.org/D63244
llvm-svn: 363396
We create several types of synthetic sections for loadable partitions, including:
- The dynamic symbol table. This allows code outside of the loadable partitions
to find entry points with dlsym.
- Creating a dynamic symbol table also requires the creation of several other
synthetic sections for the partition, such as the dynamic table and hash table
sections.
- The partition's ELF header is represented as a synthetic section in the
combined output file, and will be used by llvm-objcopy to extract partitions.
Differential Revision: https://reviews.llvm.org/D62350
llvm-svn: 362819
Branch Target Identification (BTI) and Pointer Authentication (PAC) are
architecture features introduced in v8.5a and 8.3a respectively. The new
instructions have been added in the hint space so that binaries take
advantage of support where it exists yet still run on older hardware. The
impact of each feature is:
BTI: For executable pages that have been guarded, all indirect branches
must have a destination that is a BTI instruction of the appropriate type.
For the static linker, this means that PLT entries must have a "BTI c" as
the first instruction in the sequence. BTI is an all or nothing
property for a link unit, any indirect branch not landing on a valid
destination will cause a Branch Target Exception.
PAC: The dynamic loader encodes with PACIA the address of the destination
that the PLT entry will load from the .plt.got, placing the result in a
subset of the top-bits that are not valid virtual addresses. The PLT entry
may authenticate these top-bits using the AUTIA instruction before
branching to the destination. Use of PAC in PLT sequences is a contract
between the dynamic loader and the static linker, it is independent of
whether the relocatable objects use PAC.
BTI and PAC are independent features that can be combined. So we can have
several combinations of PLT:
- Standard with no BTI or PAC
- BTI PLT with "BTI c" as first instruction.
- PAC PLT with "AUTIA1716" before the indirect branch to X17.
- BTIPAC PLT with "BTI c" as first instruction and "AUTIA1716" before the
first indirect branch to X17.
The use of BTI and PAC in relocatable object files are encoded by feature
bits in the .note.gnu.property section in a similar way to Intel CET. There
is one AArch64 specific program property GNU_PROPERTY_AARCH64_FEATURE_1_AND
and two target feature bits defined:
- GNU_PROPERTY_AARCH64_FEATURE_1_BTI
-- All executable sections are compatible with BTI.
- GNU_PROPERTY_AARCH64_FEATURE_1_PAC
-- All executable sections have return address signing enabled.
Due to the properties of FEATURE_1_AND the static linker can tell when all
input relocatable objects have the BTI and PAC feature bits set. The static
linker uses this to enable the appropriate PLT sequence.
Neither -> standard PLT
GNU_PROPERTY_AARCH64_FEATURE_1_BTI -> BTI PLT
GNU_PROPERTY_AARCH64_FEATURE_1_PAC -> PAC PLT
Both properties -> BTIPAC PLT
In addition to the .note.gnu.properties there are two new command line
options:
--force-bti : Act as if all relocatable inputs had
GNU_PROPERTY_AARCH64_FEATURE_1_BTI and warn for every relocatable object
that does not.
--pac-plt : Act as if all relocatable inputs had
GNU_PROPERTY_AARCH64_FEATURE_1_PAC. As PAC is a contract between the loader
and static linker no warning is given if it is not present in an input.
Two processor specific dynamic tags are used to communicate that a non
standard PLT sequence is being used.
DTI_AARCH64_BTI_PLT and DTI_AARCH64_BTI_PAC.
Differential Revision: https://reviews.llvm.org/D62609
llvm-svn: 362793
Any symbols defined in the LTO object are by definition the ones we
want in the final output so we skip the comdat group checking in those
cases.
This change makes the ELF code more explicit about this and means
that wasm and ELF do this in the same way.
Differential Revision: https://reviews.llvm.org/D62884
llvm-svn: 362625
This change causes us to read partition specifications from partition
specification sections and split output sections into partitions according
to their reachability from partition entry points.
This is only the first step towards a full implementation of partitions. Later
changes will add additional synthetic sections to each partition so that
they can be loaded independently.
Differential Revision: https://reviews.llvm.org/D60353
llvm-svn: 361925
My recent commits separated symbol resolution from the symbol table,
so the functions to resolve symbols are now in a somewhat wrong file.
This patch moves it to Symbols.cpp.
The functions are now member functions of the symbol.
This is code move change. I modified function names so that they are
appropriate as member functions, though. No functionality change
intended.
Differential Revision: https://reviews.llvm.org/D62290
llvm-svn: 361474
Also renames it LinkerDriver::compileBitcodeFiles.
The function doesn't logically belong to SymbolTable. We added this
function to the symbol table because symbol table used to be a
container of input files. This is no longer the case.
Differential Revision: https://reviews.llvm.org/D62291
llvm-svn: 361469
This patch is a fix for https://bugs.llvm.org/show_bug.cgi?id=41804.
We try to solve the precedence of user-specified symbol ordering file and C3 ordering provided as call graph. It deals with two case:
(1) When both --symbol-ordering-file=<file> and --call-graph-order-file=<file> are present, whichever flag comes later will take precedence.
(2) When only --symbol-ordering-file=<file> is present, it takes precedence over implicit call graph (CGProfile) generated by CGProfilePass enabled in new pass manager.
llvm-svn: 361190
This is a mechanical rewrite of replaceSymbol(A, B) to A->replace(B).
I also added a comment to Symbol::replace().
Technically this change is not necessary, but this change makes code a
bit more concise.
Differential Revision: https://reviews.llvm.org/D62117
llvm-svn: 361123
This patch implements a limited form of autolinking primarily designed to allow
either the --dependent-library compiler option, or "comment lib" pragmas (
https://docs.microsoft.com/en-us/cpp/preprocessor/comment-c-cpp?view=vs-2017) in
C/C++ e.g. #pragma comment(lib, "foo"), to cause an ELF linker to automatically
add the specified library to the link when processing the input file generated
by the compiler.
Currently this extension is unique to LLVM and LLD. However, care has been taken
to design this feature so that it could be supported by other ELF linkers.
The design goals were to provide:
- A simple linking model for developers to reason about.
- The ability to to override autolinking from the linker command line.
- Source code compatibility, where possible, with "comment lib" pragmas in other
environments (MSVC in particular).
Dependent library support is implemented differently for ELF platforms than on
the other platforms. Primarily this difference is that on ELF we pass the
dependent library specifiers directly to the linker without manipulating them.
This is in contrast to other platforms where they are mapped to a specific
linker option by the compiler. This difference is a result of the greater
variety of ELF linkers and the fact that ELF linkers tend to handle libraries in
a more complicated fashion than on other platforms. This forces us to defer
handling the specifiers to the linker.
In order to achieve a level of source code compatibility with other platforms
we have restricted this feature to work with libraries that meet the following
"reasonable" requirements:
1. There are no competing defined symbols in a given set of libraries, or
if they exist, the program owner doesn't care which is linked to their
program.
2. There may be circular dependencies between libraries.
The binary representation is a mergeable string section (SHF_MERGE,
SHF_STRINGS), called .deplibs, with custom type SHT_LLVM_DEPENDENT_LIBRARIES
(0x6fff4c04). The compiler forms this section by concatenating the arguments of
the "comment lib" pragmas and --dependent-library options in the order they are
encountered. Partial (-r, -Ur) links are handled by concatenating .deplibs
sections with the normal mergeable string section rules. As an example, #pragma
comment(lib, "foo") would result in:
.section ".deplibs","MS",@llvm_dependent_libraries,1
.asciz "foo"
For LTO, equivalent information to the contents of a the .deplibs section can be
retrieved by the LLD for bitcode input files.
LLD processes the dependent library specifiers in the following way:
1. Dependent libraries which are found from the specifiers in .deplibs sections
of relocatable object files are added when the linker decides to include that
file (which could itself be in a library) in the link. Dependent libraries
behave as if they were appended to the command line after all other options. As
a consequence the set of dependent libraries are searched last to resolve
symbols.
2. It is an error if a file cannot be found for a given specifier.
3. Any command line options in effect at the end of the command line parsing apply
to the dependent libraries, e.g. --whole-archive.
4. The linker tries to add a library or relocatable object file from each of the
strings in a .deplibs section by; first, handling the string as if it was
specified on the command line; second, by looking for the string in each of the
library search paths in turn; third, by looking for a lib<string>.a or
lib<string>.so (depending on the current mode of the linker) in each of the
library search paths.
5. A new command line option --no-dependent-libraries tells LLD to ignore the
dependent libraries.
Rationale for the above points:
1. Adding the dependent libraries last makes the process simple to understand
from a developers perspective. All linkers are able to implement this scheme.
2. Error-ing for libraries that are not found seems like better behavior than
failing the link during symbol resolution.
3. It seems useful for the user to be able to apply command line options which
will affect all of the dependent libraries. There is a potential problem of
surprise for developers, who might not realize that these options would apply
to these "invisible" input files; however, despite the potential for surprise,
this is easy for developers to reason about and gives developers the control
that they may require.
4. This algorithm takes into account all of the different ways that ELF linkers
find input files. The different search methods are tried by the linker in most
obvious to least obvious order.
5. I considered adding finer grained control over which dependent libraries were
ignored (e.g. MSVC has /nodefaultlib:<library>); however, I concluded that this
is not necessary: if finer control is required developers can fall back to using
the command line directly.
RFC thread: http://lists.llvm.org/pipermail/llvm-dev/2019-March/131004.html.
Differential Revision: https://reviews.llvm.org/D60274
llvm-svn: 360984
This is the last patch of the series of patches to make it possible to
resolve symbols without asking SymbolTable to do so.
The main point of this patch is the introduction of
`elf::resolveSymbol(Symbol *Old, Symbol *New)`. That function resolves
or merges given symbols by examining symbol types and call
replaceSymbol (which memcpy's New to Old) if necessary.
With the new function, we have now separated symbol resolution from
symbol lookup. If you already have a Symbol pointer, you can directly
resolve the symbol without asking SymbolTable to do that.
Now that the nice abstraction become available, I can start working on
performance improvement of the linker. As a starter, I'm thinking of
making --{start,end}-lib faster.
--{start,end}-lib is currently unnecessarily slow because it looks up
the symbol table twice for each symbol.
- The first hash table lookup/insertion occurs when we instantiate a
LazyObject file to insert LazyObject symbols.
- The second hash table lookup/insertion occurs when we create an
ObjFile from LazyObject file. That overwrites LazyObject symbols
with Defined symbols.
I think it is not too hard to see how we can now eliminate the second
hash table lookup. We can keep LazyObject symbols in Step 1, and then
call elf::resolveSymbol() to do Step 2.
Differential Revision: https://reviews.llvm.org/D61898
llvm-svn: 360975
The change broke some scenarios where debug information is still
needed, although MarkLive cannot see it, including the
Chromium/Android build. Reverting to unbreak that build.
llvm-svn: 360955
Previously, we handled common symbols as a kind of Defined symbol,
but what we were doing for common symbols is pretty different from
regular defined symbols.
Common symbol and defined symbol are probably as different as shared
symbol and defined symbols are different.
This patch introduces CommonSymbol to represent common symbols.
After symbols are resolved, they are converted to Defined symbols
residing in a .bss section.
Differential Revision: https://reviews.llvm.org/D61895
llvm-svn: 360841
SymbolTable's add-family functions have lots of parameters because
when they have to create a new symbol, they forward given arguments
to Symbol's constructors. Therefore, the functions take at least as
many arguments as their corresponding constructors.
This patch simplifies the add-family functions. Now, the functions
take a symbol instead of arguments to construct a symbol. If there's
no existing symbol, a given symbol is memcpy'ed to the symbol table.
Otherwise, the functions attempt to merge the existing and a given
new symbol.
I also eliminated `CanOmitFromDynSym` parameter, so that the functions
take really one argument.
Symbol classes are trivially constructible, so looks like constructing
them to pass to add-family functions is as cheap as passing a lot of
arguments to the functions. A quick benchmark showed that this patch
seems performance-neutral.
This is a preparation for
http://lists.llvm.org/pipermail/llvm-dev/2019-April/131902.html
Differential Revision: https://reviews.llvm.org/D61855
llvm-svn: 360838
Patch by Mark Johnston!
Summary:
When the option is configured, ifunc calls do not go through the PLT;
rather, they appear as regular function calls with relocations
referencing the ifunc symbol, and the resolver is invoked when
applying the relocation. This is intended for use in freestanding
environments where text relocations are permissible and is incompatible
with the -z text option. The option is motivated by ifunc usage in the
FreeBSD kernel, where ifuncs are used to elide CPU feature flag bit
checks in hot paths. Instead of replacing the cost of a branch with that
of an indirect function call, the -z ifunc-noplt option is used to ensure
that ifunc calls carry no hidden overhead relative to normal function
calls.
Test Plan:
I added a couple of regression tests and tested the FreeBSD kernel
build using the latest lld sources.
To demonstrate the effects of the change, I used a micro-benchmark
which results in frequent invocations of a FreeBSD kernel ifunc. The
benchmark was run with and without IBRS enabled, and with and without
-zifunc-noplt configured. The observed speedup is small and consistent,
and is significantly larger with IBRS enabled:
https://people.freebsd.org/~markj/ifunc-noplt/noibrs.txthttps://people.freebsd.org/~markj/ifunc-noplt/ibrs.txt
Reviewed By: ruiu, MaskRay
Differential Revision: https://reviews.llvm.org/D61613
llvm-svn: 360685
The symbol table used to be a container of vectors of input files,
but that's no longer the case because the vectors are moved out of
SymbolTable and are now global variables.
Therefore, addFile doesn't have to belong to any class. This patch
moves the function out of the class.
This patch is a preparation for my RFC [1].
[1] http://lists.llvm.org/pipermail/llvm-dev/2019-April/131902.html
Differential Revision: https://reviews.llvm.org/D61854
llvm-svn: 360666
The -n (--nmagic) disables page alignment, and acts as a -Bstatic
The -N (--omagic) does what -n does but also marks the executable segment as
writeable. As page alignment is disabled headers are not allocated unless
explicit in the linker script.
To disable page alignment in LLD we choose to set the page sizes to 1 so
that any alignment based on the page size does nothing. To set the
Target->PageSize to 1 we implement -z common-page-size, which has the side
effect of allowing the user to set the value as well.
Setting the page alignments to 1 does mean that any use of
CONSTANT(MAXPAGESIZE) or CONSTANT(COMMONPAGESIZE) in a linker script will
return 1, unlike in ld.bfd. However given that -n and -N disable paging
these probably shouldn't be used in a linker script where -n or -N is in
use.
Differential Revision: https://reviews.llvm.org/D61688
llvm-svn: 360593
for (InputFile *F : Files)
Symtab->addFile<ELFT>(F); // if there is a duplicate symbol error
...
Target = getTarget();
When parsing .debug_info in the object file (for better diagnostics),
DWARF.cpp findAux may dereference the null pointer Target
auto *DR = dyn_cast<Defined>(&File->getRelocTargetSym(Rel));
if (!DR) {
// Broken debug info may point to a non-defined symbol,
// some asan object files may also contain R_X86_64_NONE
RelType Type = Rel.getType(Config->IsMips64EL);
if (Type != Target->NoneRel) /// Target is null
Move the assignment of Target to an earlier place to fix this.
Reviewed By: ruiu
Differential Revision: https://reviews.llvm.org/D61712
llvm-svn: 360305
Patch by Robert O'Callahan.
Rust projects tend to link in all object files from all dependent
libraries and rely on --gc-sections to strip unused code and data.
Unfortunately --gc-sections doesn't currently strip any debuginfo
associated with GC'ed sections, so lld links in the full debuginfo from
all dependencies even if almost all that code has been discarded. See
https://github.com/rust-lang/rust/issues/56068 for some details.
Properly stripping debuginfo for discarded sections would be difficult,
but a simple approach that helps significantly is to mark debuginfo
sections as live only if their associated object file has at least one
live code/data section. This patch does that. In a (contrived but not
totally artificial) Rust testcase linked above, it reduces the final
binary size from 46MB to 5.1MB.
Differential Revision: https://reviews.llvm.org/D54747
llvm-svn: 358069
For partitions I intend to use the same set of version indexes in
each partition for simplicity. Since each partition will need its own
VersionNeedSection this will require moving the verneed tracking out of
VersionNeedSection. The way I've done this is to move most of the tracking
into SharedFile. What will eventually become the per-partition tracking
still lives in VersionNeedSection.
As a bonus the code gets a little simpler and more consistent with how we
handle verdef.
Differential Revision: https://reviews.llvm.org/D60307
llvm-svn: 357926
This change itself doesn't mean anything, but it helps D59780 because
in patch, we don't know whether we need to create a CET-aware PLT or
not until we read all input files.
llvm-svn: 357194
Patch by Tiancong Wang.
In D36351, Call-Chain Clustering (C3) heuristic is implemented with
option --call-graph-ordering-file <file>.
This patch adds a flag --print-symbol-order=<file> to LLD, and when
specified, it prints out the symbols ordered by the heuristics to the
file. The symbols printout is helpful to those who want to understand
the heuristics and want to reproduce the ordering with
--symbol-ordering-file in later pass.
Differential Revision: https://reviews.llvm.org/D59311
llvm-svn: 357133
We allow an archive file without symbol table as a linker input as a
workaround for a very common error in LTO build. But that logic worked
even for an archive file containing non-bitcode files, which is not
expected. This patch limits that workaround to one that contains only
bitcode files.
Differential Revision: https://reviews.llvm.org/D59373
llvm-svn: 356186
Currently we have -Rpass for filtering the remarks that are displayed as
diagnostics, but when using -fsave-optimization-record, there is no way
to filter the remarks while generating them.
This adds support for filtering remarks by passes using a regex.
Ex: `clang -fsave-optimization-record -foptimization-record-passes=inline`
will only emit the remarks coming from the pass `inline`.
This adds:
* `-fsave-optimization-record` to the driver
* `-opt-record-passes` to cc1
* `-lto-pass-remarks-filter` to the LTOCodeGenerator
* `--opt-remarks-passes` to lld
* `-pass-remarks-filter` to llc, opt, llvm-lto, llvm-lto2
* `-opt-remarks-passes` to gold-plugin
Differential Revision: https://reviews.llvm.org/D59268
Original llvm-svn: 355964
llvm-svn: 355984
Currently we have -Rpass for filtering the remarks that are displayed as
diagnostics, but when using -fsave-optimization-record, there is no way
to filter the remarks while generating them.
This adds support for filtering remarks by passes using a regex.
Ex: `clang -fsave-optimization-record -foptimization-record-passes=inline`
will only emit the remarks coming from the pass `inline`.
This adds:
* `-fsave-optimization-record` to the driver
* `-opt-record-passes` to cc1
* `-lto-pass-remarks-filter` to the LTOCodeGenerator
* `--opt-remarks-passes` to lld
* `-pass-remarks-filter` to llc, opt, llvm-lto, llvm-lto2
* `-opt-remarks-passes` to gold-plugin
Differential Revision: https://reviews.llvm.org/D59268
llvm-svn: 355964
We're going to need a separate VersionNeedSection for each partition, and
the partition data structure won't be templated.
With this the VersionTableSection class no longer needs ELFT, so detemplate it.
Differential Revision: https://reviews.llvm.org/D58808
llvm-svn: 355478
This fixes a 7.0 -> 8.0 regression when parsing
OUTPUT_FORMAT("elf32-powerpc"); or elf32-bigmips directive in ldscripts
as well as an unknown emulation error when lld is invoked by clang due
to missed elf32ppclinux case.
Patch by vit9696
Differential Revision: https://reviews.llvm.org/D58005
llvm-svn: 353968
Previously, we validated -z options after we process --version or --help flags.
So, if one of these flags is given, we wouldn't show an "unknown -z option"
error. This patch fixes that behavior.
Differential Revision: https://reviews.llvm.org/D55446
llvm-svn: 353967
Summary:
This follows the ld.bfd/gold behavior.
The error check is useful as it captures a common type of ld.so undefined symbol errors as link-time errors:
// a.cc => a.so (not linked with -z defs)
void f(); // f is undefined
void g() { f(); }
// b.cc => executable with a DT_NEEDED entry on a.so
void g();
int main() { g(); }
// ld.so errors when g() is executed (lazy binding) or when the program is started (-z now)
// symbol lookup error: ... undefined symbol: f
Reviewers: ruiu, grimar, pcc, espindola
Reviewed By: ruiu
Subscribers: llvm-commits, emaste, arichardson
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D57569
llvm-svn: 352943
Summary:
In ld.bfd/gold, --no-allow-shlib-undefined is the default when linking
an executable. This patch implements a check to error on undefined
symbols in a shared object, if all of its DT_NEEDED entries are seen.
Our approach resembles the one used in gold, achieves a good balance to
be useful but not too smart (ld.bfd traces all DSOs and emulates the
behavior of a dynamic linker to catch more cases).
The error is issued based on the symbol table, different from undefined
reference errors issued for relocations. It is most effective when there
are DSOs that were not linked with -z defs (e.g. when static sanitizers
runtime is used).
gold has a comment that some system libraries on GNU/Linux may have
spurious undefined references and thus system libraries should be
excluded (https://sourceware.org/bugzilla/show_bug.cgi?id=6811). The
story may have changed now but we make --allow-shlib-undefined the
default for now. Its interaction with -shared can be discussed in the
future.
Reviewers: ruiu, grimar, pcc, espindola
Reviewed By: ruiu
Subscribers: joerg, emaste, arichardson, llvm-commits
Differential Revision: https://reviews.llvm.org/D57385
llvm-svn: 352826
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
By default LLD will generate position independent Thunks when the --pie or
--shared option is used. Reference to absolute addresses is permitted in
other cases. For some embedded systems position independent thunks are
needed for code that executes before the MMU has been set up. The option
--pic-veneer is used by ld.bfd to force position independent thunks.
The patch adds --pic-veneer as the option is needed for the Linux kernel
on Arm.
fixes pr39886
Differential Revision: https://reviews.llvm.org/D55505
llvm-svn: 351326
Fixes https://bugs.llvm.org/show_bug.cgi?id=40134
addWrappedSymbols() must be called before addReservedSymbols() because the
latter only defines reserved symbols when they are undefined in the symbol
table. If addWrappedSymbols() is called after, then addUndefined() is called
which may lazily pull in more object files that could reference reserved
symbols.
Differential Revision: https://reviews.llvm.org/D56110
llvm-svn: 350251
Previously, this code printed out an error message like this
ld.lld: error: --reproduce: failed to open /foo: cannot open /foo
Apparently "failed to open /foo:" part is redundant.
llvm-svn: 349571
Previously, if you pass -static to lld, lld searches for only foo.a
and skips foo.so for -lfoo option. However, it didn't reject .so files
if you directly pass their pathnames via the command line, which is a bug.
Differential Revision: https://reviews.llvm.org/D55845
llvm-svn: 349557
`--plugin-opt=emit-llvm` is an option for LTO. It makes the linker to
combine all bitcode files and write the result to an output file without
doing codegen. Gold LTO plugin has this option.
This option is being used for some post-link code analysis tools that
have to see a whole program but don't need to see them in the native
machine code.
Differential Revision: https://reviews.llvm.org/D55717
llvm-svn: 349198
This is https://bugs.llvm.org//show_bug.cgi?id=38978
Spec says that:
"Objects may be built with the -z nodefaultlib option to
suppress any search of the default locations at runtime.
Use of this option implies that all the dependencies of an
object can be located using its runpaths.
Without this option, which is the most common case, no
matter how you augment the runtime linker's library
search path, its last element is always /usr/lib for 32-bit
objects and /usr/lib/64 for 64-bit objects."
The patch implements this option.
Differential revision: https://reviews.llvm.org/D54577
llvm-svn: 347647
Summary: There are too many reasonable cases that would be considered unorderable.
Reviewers: ruiu, espindola, Bigcheese
Reviewed By: ruiu
Subscribers: grimar, emaste, arichardson, llvm-commits
Differential Revision: https://reviews.llvm.org/D53669
llvm-svn: 345322
Summary:
Before, superfluous warnings were emitted for the following two cases:
1) When from symbol was in a discarded section.
The profile should be thought of as affiliated to the section.
It makes sense to ignore the profile if the section is discarded.
2) When to symbol was in a shared object.
The object file containing the profile may not know about the to
symbol, which can reside in another object file (useful profile) or a
shared object (not useful as symbols in the shared object are fixed
and unorderable). It makes sense to ignore the profile from the object
file.
Note, the warning when to symbol was undefined was suppressed in
D53044, which is still useful for --symbol-ordering-file=
This patch silences the warnings. The check is actually more relaxed (no
warnings if either From or To is not Defined) for simplicity and I don't
see a compelling reason to warn on more cases.
Reviewers: ruiu, davidxl, espindola, Bigcheese
Reviewed By: ruiu
Subscribers: emaste, arichardson, llvm-commits
Differential Revision: https://reviews.llvm.org/D53470
llvm-svn: 344974
Recommitting https://reviews.llvm.org/rL344544 after fixing undefined behavior
from left-shifting a negative value. Original commit message:
This support is slightly different then the X86_64 implementation in that calls
to __morestack don't need to get rewritten to calls to __moresatck_non_split
when a split-stack caller calls a non-split-stack callee. Instead the size of
the stack frame requested by the caller is adjusted prior to the call to
__morestack. The size the stack-frame will be adjusted by is tune-able through a
new --split-stack-adjust-size option.
llvm-svn: 344622
This reverts commit https://reviews.llvm.org/rL344544, which causes failures on
a undefined behaviour sanitizer bot -->
lld/ELF/Arch/PPC64.cpp:849:35: runtime error: left shift of negative value -1
llvm-svn: 344551
This support is slightly different then the X86_64 implementation in that calls
to __morestack don't need to get rewritten to calls to __moresatck_non_split
when a split-stack caller calls a non-split-stack callee. Instead the size of
the stack frame requested by the caller is adjusted prior to the call to
__morestack. The size the stack-frame will be adjusted by is tune-able through a
new --split-stack-adjust-size option.
Differential Revision: https://reviews.llvm.org/D52099
llvm-svn: 344544
This is https://bugs.llvm.org/show_bug.cgi?id=39289.
Currently both gold and bfd report errors about invalid options values
even with -v/-versions. But LLD does not.
This makes complicated to check the options available when LLD is used.
Patch makes LLD behavior to be consistent with GNU linkers.
Differential revision: https://reviews.llvm.org/D53278
llvm-svn: 344514
Previously, we uncompress all compressed sections before doing anything.
That works, and that is conceptually simple, but that could results in
a waste of CPU time and memory if uncompressed sections are then
discarded or just copied to the output buffer.
In particular, if .debug_gnu_pub{names,types} are compressed and if no
-gdb-index option is given, we wasted CPU and memory because we
uncompress them into newly allocated bufers and then memcpy the buffers
to the output buffer. That temporary buffer was redundant.
This patch changes how to uncompress sections. Now, compressed sections
are uncompressed lazily. To do that, `Data` member of `InputSectionBase`
is now hidden from outside, and `data()` accessor automatically expands
an compressed buffer if necessary.
If no one calls `data()`, then `writeTo()` directly uncompresses
compressed data into the output buffer. That eliminates the redundant
memory allocation and redundant memcpy.
This patch significantly reduces memory consumption (20 GiB max RSS to
15 Gib) for an executable whose .debug_gnu_pub{names,types} are in total
5 GiB in an uncompressed form.
Differential Revision: https://reviews.llvm.org/D52917
llvm-svn: 343979
Summary:
This patch adds a new flag, --warn-ifunc-textrel, to work around a glibc bug. When a code with ifunc symbols is used to produce an object file with text relocations, lld always succeeds. However, if that object file is linked using an old version of glibc, the resultant binary just crashes with segmentation fault when it is run (The bug is going to be corrected as of glibc 2.19).
Since there is no way to tell beforehand what library the object file will be linked against in the future, there does not seem to be a fool-proof way for lld to give an error only in cases where the binary will crash. So, with this change (dated 2018-09-25), lld starts to give a warning, contingent on a new command line flag that does not have a gnu counter part. The default value for --warn-ifunc-textrel is false, so lld behaviour will not change unless the user explicitly asks lld to give a warning. Users that link with a glibc library with version 2.19 or newer, or does not use ifunc symbols, or does not generate object files with text relocations do not need to take any action. Other users may consider to start passing warn-ifunc-textrel to lld to get early warnings.
Reviewers: ruiu, espindola
Reviewed By: ruiu
Subscribers: grimar, MaskRay, markj, emaste, arichardson, llvm-commits
Differential Revision: https://reviews.llvm.org/D52430
llvm-svn: 343628
This uses the call graph profile embedded in the object files to construct the call graph.
This is read from a SHT_LLVM_CALL_GRAPH_PROFILE (0x6fff4c02) section as (uint32_t, uint32_t, uint64_t) tuples as (from symbol index, to symbol index, weight).
Differential Revision: https://reviews.llvm.org/D45850
llvm-svn: 343552
When we write a struct to a mmap'ed buffer, we usually use
write16/32/64, but we didn't for VersionDefinitionSection, so
we needed to template that class.
llvm-svn: 343024
Previously, if you invoke lld's `main` more than once in the same process,
the second invocation could fail or produce a wrong result due to a stale
pointer values of the previous run.
Differential Revision: https://reviews.llvm.org/D52506
llvm-svn: 343009
The access sequence for global variables in the medium and large code models use
2 instructions to add an offset to the toc-pointer. If the offset fits whithin
16-bits then the instruction that sets the high 16 bits is redundant.
This patch adds the --toc-optimize option, (on by default) and enables rewriting
of 2 instruction global variable accesses into 1 when the offset from the
TOC-pointer to the variable (or .got entry) fits in 16 signed bits. eg
addis %r3, %r2, 0 --> nop
addi %r3, %r3, -0x8000 --> addi %r3, %r2, -0x8000
This rewriting can be disabled with the --no-toc-optimize flag
Differential Revision: https://reviews.llvm.org/D49237
llvm-svn: 342602
-z interpose sets the DF_1_INTERPOSE flag, marking the object as an
interposer.
Via FreeBSD PR 230604, linking Valgrind with lld failed.
Differential Revision: https://reviews.llvm.org/D52094
llvm-svn: 342239
This is a minor follow-up to https://reviews.llvm.org/D49189. On Windows, lld
used to print "lld-link.exe: error: ...". Now it just prints "lld-link: error:
...". This matches what link.exe does (it prints "LINK : ...") and makes lld's
output less dependent on the host system.
https://reviews.llvm.org/D51133
llvm-svn: 340487
We have an issue with -wrap that the option doesn't work well when
renamed symbols get PLT entries. I'll explain what is the issue and
how this patch solves it.
For one -wrap option, we have three symbols: foo, wrap_foo and real_foo.
Currently, we use memcpy to overwrite wrapped symbols so that they get
the same contents. This works in most cases but doesn't when the relocation
processor sets some flags in the symbol. memcpy'ed symbols are just
aliases, so they always have to have the same contents, but the
relocation processor breaks that assumption.
r336609 is an attempt to fix the issue by memcpy'ing again after
processing relocations, so that symbols that are out of sync get the
same contents again. That works in most cases as well, but it breaks
ASan build in a mysterious way.
We could probably fix the issue by choosing symbol attributes that need
to be copied after they are updated. But it feels too complicated to me.
So, in this patch, I fixed it once and for all. With this patch, we no
longer memcpy symbols. All references to renamed symbols point to new
symbols after wrapSymbols() is done.
Differential Revision: https://reviews.llvm.org/D50569
llvm-svn: 340387
Older Arm architectures do not support the MOVT and MOVW instructions so we
must use an alternative sequence of instructions to transfer control to the
destination.
Assuming at least Armv5 this patch adds support for Thunks that load or add
to the program counter. Note that there are no Armv5 Thumb Thunks as there
is no Thumb branch instruction in Armv5 that supports Thunks. These thunks
will not work for Armv4t (arm7tdmi) as this architecture cannot change state
from using the LDR or ADD instruction.
Differential Revision: https://reviews.llvm.org/D50077
llvm-svn: 340160
The Thumb BL and BLX instructions on older Arm Architectures such as v5 and
v6 have a constrained encoding J1 and J2 must equal 1, later Architectures
relaxed this restriction allowing J1 and J2 to be used to calculate a larger
immediate.
This patch adds support for the old encoding, it is used when the build
attributes for the input objects only contain older architectures.
Differential Revision: https://reviews.llvm.org/D50076
llvm-svn: 340159
The code involved was simply dead. `IgnoreAll` value is used in
`maybeReportUndefined` only which is never called for -r.
And at the same time `IgnoreAll` was set only for -r.
llvm-svn: 339672
We have a crash issue when handling the empty -defsym.
For parsing this option we are using ScriptParser class which is used
generally for reading the linker script. For empty defsym case, we
pass the empty memory buffer and crash in the place removed in https://reviews.llvm.org/rL336436.
But reverting of the above patch would not help here (we would still crash but a bit later). And
even after fixing the crash we would report something like
"lld.exe: error: -defsym:1: unexpected EOF"
It is probably not the appropriate message because mentions EOF.
I think the issue should be handled on a higher level like this patch does.
So we do not want to pass the empty memory buffer first of all I believe.
Differential revision: https://reviews.llvm.org/D50498
llvm-svn: 339412
Patch by PkmX.
This patch makes lld recognize RISC-V target and implements basic
relocation for RV32/RV64 (and RVC). This should be necessary for static
linking ELF applications.
The ABI documentation for RISC-V can be found at:
https://github.com/riscv/riscv-elf-psabi-doc/blob/master/riscv-elf.md.
Note that the documentation is far from complete so we had to figure out
some details from bfd.
The patch should be pretty straightforward. Some highlights:
- A new relocation Expr R_RISCV_PC_INDIRECT is added. This is needed as
the low part of a PC-relative relocation is linked to the corresponding
high part (auipc), see:
https://github.com/riscv/riscv-elf-psabi-doc/blob/master/riscv-elf.md#pc-relative-symbol-addresses
- LLVM's MC support for RISC-V is very incomplete (we are working on
this), so tests are given in objectyaml format with the original
assembly included in the comments. Once we have complete support for
RISC-V in MC, we can switch to llvm-as/llvm-objdump.
- We don't support linker relaxation for now as it requires greater
changes to lld that is beyond the scope of this patch. Once this is
accepted we can start to work on adding relaxation to lld.
Differential Revision: https://reviews.llvm.org/D39322
llvm-svn: 339364
Adding all libcall symbols to the link can have undesired consequences.
For example, the libgcc implementation of __sync_val_compare_and_swap_8
on 32-bit ARM pulls in an .init_array entry that aborts the program if
the Linux kernel does not support 64-bit atomics, which would prevent
the program from running even if it does not use 64-bit atomics.
This change makes it so that we only add libcall symbols to the
link before LTO if we have to, i.e. if the symbol's definition is in
bitcode. Any other required libcall symbols will be added to the link
after LTO when we add the LTO object file to the link.
Differential Revision: https://reviews.llvm.org/D50475
llvm-svn: 339301
GNU ld's manual says that TARGET(foo) is basically an alias for
`--format foo` where foo is a BFD target name such as elf64-x86-64.
Unlike GNU linkers, lld doesn't allow arbitrary BFD target name for
--format. We accept only "default", "elf" or "binary". This makes
situation a bit tricky because we can't simply make TARGET an alias for
--target.
A quick code search revealed that the usage number of TARGET is very
small, and the only meaningful usage is to switch to the binary mode.
Thus, in this patch, we handle only TARGET(elf.*) and TARGET(binary).
Differential Revision: https://reviews.llvm.org/D48153
llvm-svn: 339060
This simplifies the code a bit.
It is NFC except that it removes early exit for Count == 0
which does not seem to be useful (we have no such tests either).
Differential revision: https://reviews.llvm.org/D49136
llvm-svn: 338953
This reverts commit r338596 because it contained a functional change.
The patch accidentally replaced StringRef::startswith with the exact match.
llvm-svn: 338600
If any of our inputs are bitcode files, the LTO code generator may create
references to certain library functions that might not be explicit in the
bitcode file's symbol table. If any of those library functions are defined
in a bitcode file in an archive member, we need to arrange to use LTO to
compile those archive members by adding them to the link beforehand.
Differential Revision: https://reviews.llvm.org/D50017
llvm-svn: 338434
Summary:
This adds an LLD flag to mark executable LOAD segments execute-only for AArch64 targets.
In AArch64 the expectation is that code is execute-only compatible, so this just adds a linker option to enforce this.
Patch by: ivanlozano (Ivan Lozano)
Reviewers: srhines, echristo, peter.smith, eugenis, javed.absar, espindola, ruiu
Reviewed By: ruiu
Subscribers: dokyungs, emaste, arichardson, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D49456
llvm-svn: 338271
Under --icf=all we now only apply KeepUnique to non-executable
address-significant sections. This has the effect of making --icf=all
mean unsafe ICF for executable sections and safe ICF for non-executable
sections.
With this change the meaning of the KeepUnique bit changes to
"does the current ICF mode (together with the --keep-unique and
--ignore-data-address-equality flags) require this section to be
kept unique".
Differential Revision: https://reviews.llvm.org/D49626
llvm-svn: 337640
lld currently prepends the absolute path to itself to every diagnostic it
emits. This path can be longer than the diagnostic, and makes the actual error
message hard to read.
There isn't a good reason for printing this path: if you want to know which lld
you're running, pass -v to clang – chances are that if you're unsure of this,
you're not only unsure when it errors out. Some people want an indication that
the diagnostic is from the linker though, so instead print just the basename of
the linker's path.
Before:
```
$ out/bin/clang -target x86_64-unknown-linux -x c++ /dev/null -fuse-ld=lld
/Users/thakis/src/llvm-mono/out/bin/ld.lld: error: cannot open crt1.o: No such file or directory
/Users/thakis/src/llvm-mono/out/bin/ld.lld: error: cannot open crti.o: No such file or directory
/Users/thakis/src/llvm-mono/out/bin/ld.lld: error: cannot open crtbegin.o: No such file or directory
/Users/thakis/src/llvm-mono/out/bin/ld.lld: error: unable to find library -lgcc
/Users/thakis/src/llvm-mono/out/bin/ld.lld: error: unable to find library -lgcc_s
/Users/thakis/src/llvm-mono/out/bin/ld.lld: error: unable to find library -lc
/Users/thakis/src/llvm-mono/out/bin/ld.lld: error: unable to find library -lgcc
/Users/thakis/src/llvm-mono/out/bin/ld.lld: error: unable to find library -lgcc_s
/Users/thakis/src/llvm-mono/out/bin/ld.lld: error: cannot open crtend.o: No such file or directory
/Users/thakis/src/llvm-mono/out/bin/ld.lld: error: cannot open crtn.o: No such file or directory
clang: error: linker command failed with exit code 1 (use -v to see invocation)
```
After:
```
$ out/bin/clang -target x86_64-unknown-linux -x c++ /dev/null -fuse-ld=lld
ld.lld: error: cannot open crt1.o: No such file or directory
ld.lld: error: cannot open crti.o: No such file or directory
ld.lld: error: cannot open crtbegin.o: No such file or directory
ld.lld: error: unable to find library -lgcc
ld.lld: error: unable to find library -lgcc_s
ld.lld: error: unable to find library -lc
ld.lld: error: unable to find library -lgcc
ld.lld: error: unable to find library -lgcc_s
ld.lld: error: cannot open crtend.o: No such file or directory
ld.lld: error: cannot open crtn.o: No such file or directory
clang: error: linker command failed with exit code 1 (use -v to see invocation)
```
https://reviews.llvm.org/D49189
llvm-svn: 337634
Summary:
This adds support to option -plugin-opt=dwo_dir=${DIR}. This option is used to specify the directory to store the .dwo files when LTO and debug fission is used
at the same time.
Reviewers: ruiu, espindola, pcc
Reviewed By: pcc
Subscribers: eraman, dexonsmith, mehdi_amini, emaste, arichardson, steven_wu, llvm-commits
Differential Revision: https://reviews.llvm.org/D47904
llvm-svn: 337195
Archives created with ThinLTO are bitcodes, they also need to be searched for excluded symbols.
Differential Revision: https://reviews.llvm.org/D48857
llvm-svn: 336826
Patch by Rahul Chaudhry!
This change adds experimental support for SHT_RELR sections, proposed
here: https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg
Pass '--pack-dyn-relocs=relr' to enable generation of SHT_RELR section
and DT_RELR, DT_RELRSZ, and DT_RELRENT dynamic tags.
Definitions for the new ELF section type and dynamic array tags, as well
as the encoding used in the new section are all under discussion and are
subject to change. Use with caution!
Pass '--use-android-relr-tags' with '--pack-dyn-relocs=relr' to use
SHT_ANDROID_RELR section type instead of SHT_RELR, as well as
DT_ANDROID_RELR* dynamic tags instead of DT_RELR*. The generated
section contents are identical.
'--pack-dyn-relocs=android+relr --use-android-relr-tags' enables both
'--pack-dyn-relocs=android' and '--pack-dyn-relocs=relr': lld will
encode the relative relocations in a SHT_ANDROID_RELR section, and pack
the rest of the dynamic relocations in a SHT_ANDROID_REL(A) section.
Differential Revision: https://reviews.llvm.org/D48247
llvm-svn: 336594
Summary: For --wrap foo --wrap foo, bfd/gold wrap the symbol only once but LLD would rotate it twice.
Reviewers: ruiu, espindola
Subscribers: emaste, arichardson, mgrang, llvm-commits
Differential Revision: https://reviews.llvm.org/D48298
llvm-svn: 334991
Almost all entries inside MIPS GOT are referenced by signed 16-bit
index. Zero entry lies approximately in the middle of the GOT. So the
total number of GOT entries cannot exceed ~16384 for 32-bit architecture
and ~8192 for 64-bit architecture. This limitation makes impossible to
link rather large application like for example LLVM+Clang. There are two
workaround for this problem. The first one is using the -mxgot
compiler's flag. It enables using a 32-bit index to access GOT entries.
But each access requires two assembly instructions two load GOT entry
index to a register. Another workaround is multi-GOT. This patch
implements it.
Here is a brief description of multi-GOT for detailed one see the
following link https://dmz-portal.mips.com/wiki/MIPS_Multi_GOT.
If the sum of local, global and tls entries is less than 64K only single
got is enough. Otherwise, multi-got is created. Series of primary and
multiple secondary GOTs have the following layout:
```
- Primary GOT
Header
Local entries
Global entries
Relocation only entries
TLS entries
- Secondary GOT
Local entries
Global entries
TLS entries
...
```
All GOT entries required by relocations from a single input file
entirely belong to either primary or one of secondary GOTs. To reference
GOT entries each GOT has its own _gp value points to the "middle" of the
GOT. In the code this value loaded to the register which is used for GOT
access.
MIPS 32 function's prologue:
```
lui v0,0x0
0: R_MIPS_HI16 _gp_disp
addiu v0,v0,0
4: R_MIPS_LO16 _gp_disp
```
MIPS 64 function's prologue:
```
lui at,0x0
14: R_MIPS_GPREL16 main
```
Dynamic linker does not know anything about secondary GOTs and cannot
use a regular MIPS mechanism for GOT entries initialization. So we have
to use an approach accepted by other architectures and create dynamic
relocations R_MIPS_REL32 to initialize global entries (and local in case
of PIC code) in secondary GOTs. But ironically MIPS dynamic linker
requires GOT entries and correspondingly ordered dynamic symbol table
entries to deal with dynamic relocations. To handle this problem
relocation-only section in the primary GOT contains entries for all
symbols referenced in global parts of secondary GOTs. Although the sum
of local and normal global entries of the primary got should be less
than 64K, the size of the primary got (including relocation-only entries
can be greater than 64K, because parts of the primary got that overflow
the 64K limit are used only by the dynamic linker at dynamic link-time
and not by 16-bit gp-relative addressing at run-time.
The patch affects common LLD code in the following places:
- Added new hidden -mips-got-size flag. This flag required to set low
maximum size of a single GOT to be able to test the implementation using
small test cases.
- Added InputFile argument to the getRelocTargetVA function. The same
symbol referenced by GOT relocation from different input file might be
allocated in different GOT. So result of relocation depends on the file.
- Added new ctor to the DynamicReloc class. This constructor records
settings of dynamic relocation which used to adjust address of 64kb page
lies inside a specific output section.
With the patch LLD is able to link all LLVM+Clang+LLD applications and
libraries for MIPS 32/64 targets.
Differential revision: https://reviews.llvm.org/D31528
llvm-svn: 334390
Previously, "-m is missing" error message is shown if you pass a
nonexistent file or don't pass any file at all to lld, as shown below:
$ ld.lld nonexistent.o
ld.lld: error: cannot open nonexistent.o: No such file or directory
ld.lld: error: target emulation unknown: -m or at least one .o file required
This patch eliminates the second error message because it's not related
and even inaccurate (you passed a .o file though it didn't exist).
llvm-svn: 334024
--push-state implemented in this patch saves the states of --as-needed,
--whole-archive and --static. It saves less number of flags than GNU linkers.
Since even GNU linkers save different flags, no one seems to care about the
details. In this patch, I tried to save the minimal number of flags to not
complicate the implementation and the siutation.
I'm not personally happy about adding the --{push,pop}-state flags though.
That options seem too hacky to me. However, gcc started using the options
since GCC 8 when GNU ld is available at the build time. Therefore, lld
is no longer a drop-in replacmenet for GNU linker for that machine
without supporting the flags.
Fixes https://bugs.llvm.org/show_bug.cgi?id=34567
Differential Revision: https://reviews.llvm.org/D47542
llvm-svn: 333646
Previously, we had a loop to iterate over options starting with
`--plugin-opt=` and parse them by hand. But we can make OptTable
do that job for us.
Differential Revision: https://reviews.llvm.org/D47167
llvm-svn: 332935
The --keep-unique <symbol> option is taken from gold. The intention is that
<symbol> will be prevented from being folded by ICF. Although not
specifically mentioned in the documentation <symbol> only matches
global symbols, with a warning if the symbol is not found.
The implementation finds the Section defining <symbol> and removes it from
the set of sections considered for ICF.
Differential Revision: https://reviews.llvm.org/D46755
llvm-svn: 332332
Separate output sections for selected text section prefixes to enable TLB optimizations and for readablilty.
Differential Revision: https://reviews.llvm.org/D45841
llvm-svn: 331823
Our promise is that as long as there's no fatal error (i.e. broken
file is given to the linker), our main function returns to the caller.
So we can't use exit() in the regular code path.
Differential Revision: https://reviews.llvm.org/D46442
llvm-svn: 331690
Android AOSP has started specifying -m aarch64_elf64_le_vec as supported
by gold and BFD. This is a simple change to add the emulation so that LLD
doesn't immediately error when used as a linker in an AOSP build.
Differential Revision: https://reviews.llvm.org/D46429
llvm-svn: 331521
Now that getSectionPiece is fast (uses a hash) it is probably OK to
split merge sections early.
The reason I want to do this is to split eh_frame sections in the same
place.
This does mean that we have to decompress early. Given that the only
compressed sections are debug info, I don't think we are missing much.
It is a small improvement: 0.5% on the geometric mean.
llvm-svn: 331058
The fix is to copy Used when replacing the symbol.
Original message:
Do not keep shared symbols created from garbage-collected eliminated DSOs.
If all references to a DSO happen to be weak, and if the DSO is
specified with --as-needed, the DSO is not added to DT_NEEDED.
If that happens, we also need to eliminate shared symbols created
from the DSO. Otherwise, they become dangling references that point
to non-exsitent DSO.
Fixes https://bugs.llvm.org/show_bug.cgi?id=36991
Differential Revision: https://reviews.llvm.org/D45536
llvm-svn: 330788
This is causing large numbers of Chromium test executables to crash on
shutdown. The relevant symbol seems to be __cxa_finalize, which gets
removed from the dynamic symbol table for some of the support libraries.
llvm-svn: 330164
If all references to a DSO happen to be weak, and if the DSO is
specified with --as-needed, the DSO is not added to DT_NEEDED.
If that happens, we also need to eliminate shared symbols created
from the DSO. Otherwise, they become dangling references that point
to non-exsitent DSO.
Fixes https://bugs.llvm.org/show_bug.cgi?id=36991
Differential Revision: https://reviews.llvm.org/D45536
llvm-svn: 329960
I'm proposing a new command line flag, --warn-backrefs in this patch.
The flag and the feature proposed below don't exist in GNU linkers
nor the current lld.
--warn-backrefs is an option to detect reverse or cyclic dependencies
between static archives, and it can be used to keep your program
compatible with GNU linkers after you switch to lld. I'll explain the
feature and why you may find it useful below.
lld's symbol resolution semantics is more relaxed than traditional
Unix linkers. Therefore,
ld.lld foo.a bar.o
succeeds even if bar.o contains an undefined symbol that have to be
resolved by some object file in foo.a. Traditional Unix linkers
don't allow this kind of backward reference, as they visit each
file only once from left to right in the command line while
resolving all undefined symbol at the moment of visiting.
In the above case, since there's no undefined symbol when a linker
visits foo.a, no files are pulled out from foo.a, and because the
linker forgets about foo.a after visiting, it can't resolve
undefined symbols that could have been resolved otherwise.
That lld accepts more relaxed form means (besides it makes more
sense) that you can accidentally write a command line or a build
file that works only with lld, even if you have a plan to
distribute it to wider users who may be using GNU linkers. With
--check-library-dependency, you can detect a library order that
doesn't work with other Unix linkers.
The option is also useful to detect cyclic dependencies between
static archives. Again, lld accepts
ld.lld foo.a bar.a
even if foo.a and bar.a depend on each other. With --warn-backrefs
it is handled as an error.
Here is how the option works. We assign a group ID to each file. A
file with a smaller group ID can pull out object files from an
archive file with an equal or greater group ID. Otherwise, it is a
reverse dependency and an error.
A file outside --{start,end}-group gets a fresh ID when
instantiated. All files within the same --{start,end}-group get the
same group ID. E.g.
ld.lld A B --start-group C D --end-group E
A and B form group 0, C, D and their member object files form group
1, and E forms group 2. I think that you can see how this group
assignment rule simulates the traditional linker's semantics.
Differential Revision: https://reviews.llvm.org/D45195
llvm-svn: 329636
I tried a few different designs to find a way to implement it without
too much hassle and settled down with this. Unlike before, object files
given as arguments for --just-symbols are handled as object files, with
an exception that their section tables are handled as if they were all
null.
Differential Revision: https://reviews.llvm.org/D42025
llvm-svn: 328852
This is an option to print out a table of symbols and filenames.
The output format of this option is the same as GNU, so that it can be
processed by the same scripts as before after migrating from GNU to lld.
This option is mildly useful; we can live without it. But it is pretty
convenient sometimes, and it can be implemented in 50 lines of code, so
I think lld should support this option.
Differential Revision: https://reviews.llvm.org/D44336
llvm-svn: 327565
This implements INSERT AFTER in a following way:
During reading scripts it collects all insert statements.
After we done and read all files it inserts statements into script commands list.
With that:
* Rest of code does know nothing about INSERT.
* Approach is straightforward and have no visible limitations.
* It is also easy to support INSERT BEFORE (was seen in clang code once).
* Should work for PR35877 and similar cases.
Cons:
* It assumes we have "main" scripts that describes sections.
Differential revision: https://reviews.llvm.org/D43468
llvm-svn: 327003
GNU linkers by convention supports both `--foo bar` and `--foo=bar` styles
for all long options that take arguments.
Differential Revision: https://reviews.llvm.org/D43972
llvm-svn: 326506
This should resolve the issue that lld build fails in some hosts
that uses case-insensitive file system.
Differential Revision: https://reviews.llvm.org/D43788
llvm-svn: 326339
It should be possible to resolve undefined symbols in dynamic libraries
using symbols defined in a linker script.
Differential Revision: https://reviews.llvm.org/D43011
llvm-svn: 326176
This patch provides migitation for CVE-2017-5715, Spectre variant two,
which affects the P5600 and P6600. It implements the LLD part of
-z hazardplt. Like the Clang part of this patch, I have opted for that
specific option name in case alternative migitation methods are required
in the future.
The mitigation strategy suggested by MIPS for these processors is to use
hazard barrier instructions. 'jalr.hb' and 'jr.hb' are hazard
barrier variants of the 'jalr' and 'jr' instructions respectively.
These instructions impede the execution of instruction stream until
architecturally defined hazards (changes to the instruction stream,
privileged registers which may affect execution) are cleared. These
instructions in MIPS' designs are not speculated past.
These instructions are defined by the MIPS32R2 ISA, so this mitigation
method is not compatible with processors which implement an earlier
revision of the MIPS ISA.
For LLD, this changes PLT stubs to use 'jalr.hb' and 'jr.hb'.
Reviewers: atanasyan, ruiu
Differential Revision: https://reviews.llvm.org/D43488
llvm-svn: 325647
Previously wasm used a separate header to declare markLive
and ELF used to declare ICF. This change makes each backend
consistently declare these in their own headers.
Differential Revision: https://reviews.llvm.org/D43529
llvm-svn: 325631
We are running lld tests with "--full-shutdown" option because we don't
want to call _exit() in lld if it is running tests. Regular shutdown
is needed for leak sanitizer.
This patch changes the way how we tell lld that it is running tests.
Now "--full-shutdown" is removed, and LLD_IN_TEST environment variable
is used instead.
This patch enables full shutdown on all ports, e.g. ELF, COFF and wasm.
Previously, we enabled it only for ELF.
Differential Revision: https://reviews.llvm.org/D43410
llvm-svn: 325413
There seems to be no reason to collect this list of symbols.
Also fix a bug where --exclude-libs would apply to all symbols that
appear in an archive's symbol table, even if the relevant archive
member was not added to the link.
Differential Revision: https://reviews.llvm.org/D43369
llvm-svn: 325380
Summary:
This follows up on r321889 where writing of Elf_Rel addends was partially
moved to RelocationBaseSection. This patch ensures that the addends are
always written to the output section when a input section uses RELA but the
output is REL.
Differential Revision: https://reviews.llvm.org/D42843
llvm-svn: 325328
When we are emitting a relocatable output, we should keep the original
symbol name including "@" part. Previously, we drop that part unconditionally
which resulted in dropping versions from symbols.
Differential Revision: https://reviews.llvm.org/D43307
llvm-svn: 325204
This patch addresses a minor compatibility issue with GNU linkers.
Previously, --export-dynamic-symbol is completely ignored if you
pass --export-dynamic together.
Differential Revision: https://reviews.llvm.org/D43266
llvm-svn: 325152
There are a number of different situations when symbols are requested
to be ordered in the --symbol-ordering-file that cannot be ordered for
some reason. To assist with identifying these symbols, and either
tidying up the order file, or the inputs, a number of warnings have
been added. As some users may find these warnings unhelpful, due to how
they use the symbol ordering file, a switch has also been added to
disable these warnings.
The cases where we now warn are:
* Entries in the order file that don't correspond to any symbol in the input
* Undefined symbols
* Absolute symbols
* Symbols imported from shared objects
* Symbols that are discarded, due to e.g. --gc-sections or /DISCARD/ linker script sections
* Multiple of the same entry in the order file
Reviewed by: rafael, ruiu
Differential Revision: https://reviews.llvm.org/D42475
llvm-svn: 325125
This is for compatiblity with GNU gold. GNU gold tries to resolve
symbols specified by --export-dynamic-symbol. So, if a symbol specified
by --export-dynamic-symbol is in an archive file, lld's result is
currently different from gold's.
Interestingly, that behavior is different for --dynamic-list.
I added a new test to ensure that.
Differential Revision: https://reviews.llvm.org/D43103
llvm-svn: 324752
When you omit an argument, most options fall back to their defaults.
For example, --color-diagnostics is a synonym for --color-diagnostics=auto.
We don't have a way to specify the default choice for --build-id, so we
can't describe --build-id (without an argument) in that way.
This patch adds "fast" for the default build-id choice.
Differential Revision: https://reviews.llvm.org/D43032
llvm-svn: 324502
Previously we ignored -plugin-opt=mcpu=<xxx>
and the only way to set CPU string was to pass
-mllvm -mcpu=<xxx>
Though clang may pass it with use of plugin options:
-plugin-opt=mcpu=x86-64
Since we are trying to be compatible in command line
with gold plugin, seems we should support it too.
Differential revision: https://reviews.llvm.org/D42956
llvm-svn: 324459
With fix:
Keep logic that ignores -plugin-opt=mcpu=x86-64 -plugin-opt=thinlto,
add checks for those to testcases.
Original commit message:
[ELF] - Use InitTargetOptionsFromCodeGenFlags/ParseCommandLineOptions for parsing LTO options.
gold plugin uses InitTargetOptionsFromCodeGenFlags +
ParseCommandLineOptions for parsing LTO options.
Patch do the same change for LLD.
Such change helps to avoid parsing/whitelisting LTO
plugin options again on linker side, what can help LLD
to automatically support new -plugin-opt=xxx options
passed.
Differential revision: https://reviews.llvm.org/D42733
llvm-svn: 324340
gold plugin uses InitTargetOptionsFromCodeGenFlags +
ParseCommandLineOptions for parsing LTO options.
Patch do the same change for LLD.
Such change helps to avoid parsing/whitelisting LTO
plugin options again on linker side, what can help LLD
to automatically support new -plugin-opt=xxx options
passed.
Differential revision: https://reviews.llvm.org/D42733
llvm-svn: 324322
When using Elf_Rela every tool should use the addend in the
relocation.
We have --apply-dynamic-relocs to work around bugs in tools that don't
do that.
The default value of --apply-dynamic-relocs should be false to make
sure these bugs are more easily found in the future.
llvm-svn: 324264
When resolving dynamic RELA relocations the addend is taken from the
relocation and not the place being relocated. Accordingly lld does not
write the addend field to the place like it would for a REL relocation.
Unfortunately there is some system software, in particlar dynamic loaders
such as Bionic's linker64 that use the value of the place prior to
relocation to find the offset that they have been loaded at. Both gold
and bfd control this behavior with the --[no-]apply-dynamic-relocs option.
This change implements the option and defaults it to true for compatibility
with gold and bfd.
Differential Revision: https://reviews.llvm.org/D42797
llvm-svn: 324221
Initially LLD generates Elf_Rel relocations for O32 ABI and Elf_Rela
relocations for N32 / N64 ABIs. In other words, format of input and
output relocations was always the same. Now LLD generates all output
relocations using Elf_Rel format only. It conforms to ABIs requirement.
The patch suggested by Alexander Richardson.
llvm-svn: 324064
--nopie was a typo. GNU gold doesn't recognize it. It is also
inconsistent with other options that have --foo and --no-foo.
Differential Revision: https://reviews.llvm.org/D42825
llvm-svn: 324043
Currently ICF information is output through stderr if the "--verbose"
flag is used. This differs to Gold for example, which uses an explicit
flag to output this to stdout. This commit adds the
"--print-icf-sections" and "--no-print-icf-sections" flags and changes
the output message format for clarity and consistency with
"--print-gc-sections". These messages are still output to stderr if
using the verbose flag. However to avoid intermingled message output to
console, this will not occur when the "--print-icf-sections" flag is
used.
Existing tests have been modified to expect the new message format from
stderr.
Patch by Owen Reynolds.
Differential Revision: https://reviews.llvm.org/D42375
Reviewers: ruiu, rafael
Reviewed by:
llvm-svn: 323976
Currently symbols assigned or created by linkerscript are not processed early
enough. As a result it is not possible to version them or assign any other flags/properties.
Patch creates Defined symbols for -defsym and linkerscript symbols early,
so that issue from above can be addressed.
It is based on Rafael Espindola's version of D38239 patch.
Fixes PR34121.
Differential revision: https://reviews.llvm.org/D41987
llvm-svn: 323729
Summary:
First, we need to explain the core of the vulnerability. Note that this
is a very incomplete description, please see the Project Zero blog post
for details:
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
The basis for branch target injection is to direct speculative execution
of the processor to some "gadget" of executable code by poisoning the
prediction of indirect branches with the address of that gadget. The
gadget in turn contains an operation that provides a side channel for
reading data. Most commonly, this will look like a load of secret data
followed by a branch on the loaded value and then a load of some
predictable cache line. The attacker then uses timing of the processors
cache to determine which direction the branch took *in the speculative
execution*, and in turn what one bit of the loaded value was. Due to the
nature of these timing side channels and the branch predictor on Intel
processors, this allows an attacker to leak data only accessible to
a privileged domain (like the kernel) back into an unprivileged domain.
The goal is simple: avoid generating code which contains an indirect
branch that could have its prediction poisoned by an attacker. In many
cases, the compiler can simply use directed conditional branches and
a small search tree. LLVM already has support for lowering switches in
this way and the first step of this patch is to disable jump-table
lowering of switches and introduce a pass to rewrite explicit indirectbr
sequences into a switch over integers.
However, there is no fully general alternative to indirect calls. We
introduce a new construct we call a "retpoline" to implement indirect
calls in a non-speculatable way. It can be thought of loosely as
a trampoline for indirect calls which uses the RET instruction on x86.
Further, we arrange for a specific call->ret sequence which ensures the
processor predicts the return to go to a controlled, known location. The
retpoline then "smashes" the return address pushed onto the stack by the
call with the desired target of the original indirect call. The result
is a predicted return to the next instruction after a call (which can be
used to trap speculative execution within an infinite loop) and an
actual indirect branch to an arbitrary address.
On 64-bit x86 ABIs, this is especially easily done in the compiler by
using a guaranteed scratch register to pass the target into this device.
For 32-bit ABIs there isn't a guaranteed scratch register and so several
different retpoline variants are introduced to use a scratch register if
one is available in the calling convention and to otherwise use direct
stack push/pop sequences to pass the target address.
This "retpoline" mitigation is fully described in the following blog
post: https://support.google.com/faqs/answer/7625886
We also support a target feature that disables emission of the retpoline
thunk by the compiler to allow for custom thunks if users want them.
These are particularly useful in environments like kernels that
routinely do hot-patching on boot and want to hot-patch their thunk to
different code sequences. They can write this custom thunk and use
`-mretpoline-external-thunk` *in addition* to `-mretpoline`. In this
case, on x86-64 thu thunk names must be:
```
__llvm_external_retpoline_r11
```
or on 32-bit:
```
__llvm_external_retpoline_eax
__llvm_external_retpoline_ecx
__llvm_external_retpoline_edx
__llvm_external_retpoline_push
```
And the target of the retpoline is passed in the named register, or in
the case of the `push` suffix on the top of the stack via a `pushl`
instruction.
There is one other important source of indirect branches in x86 ELF
binaries: the PLT. These patches also include support for LLD to
generate PLT entries that perform a retpoline-style indirection.
The only other indirect branches remaining that we are aware of are from
precompiled runtimes (such as crt0.o and similar). The ones we have
found are not really attackable, and so we have not focused on them
here, but eventually these runtimes should also be replicated for
retpoline-ed configurations for completeness.
For kernels or other freestanding or fully static executables, the
compiler switch `-mretpoline` is sufficient to fully mitigate this
particular attack. For dynamic executables, you must compile *all*
libraries with `-mretpoline` and additionally link the dynamic
executable and all shared libraries with LLD and pass `-z retpolineplt`
(or use similar functionality from some other linker). We strongly
recommend also using `-z now` as non-lazy binding allows the
retpoline-mitigated PLT to be substantially smaller.
When manually apply similar transformations to `-mretpoline` to the
Linux kernel we observed very small performance hits to applications
running typical workloads, and relatively minor hits (approximately 2%)
even for extremely syscall-heavy applications. This is largely due to
the small number of indirect branches that occur in performance
sensitive paths of the kernel.
When using these patches on statically linked applications, especially
C++ applications, you should expect to see a much more dramatic
performance hit. For microbenchmarks that are switch, indirect-, or
virtual-call heavy we have seen overheads ranging from 10% to 50%.
However, real-world workloads exhibit substantially lower performance
impact. Notably, techniques such as PGO and ThinLTO dramatically reduce
the impact of hot indirect calls (by speculatively promoting them to
direct calls) and allow optimized search trees to be used to lower
switches. If you need to deploy these techniques in C++ applications, we
*strongly* recommend that you ensure all hot call targets are statically
linked (avoiding PLT indirection) and use both PGO and ThinLTO. Well
tuned servers using all of these techniques saw 5% - 10% overhead from
the use of retpoline.
We will add detailed documentation covering these components in
subsequent patches, but wanted to make the core functionality available
as soon as possible. Happy for more code review, but we'd really like to
get these patches landed and backported ASAP for obvious reasons. We're
planning to backport this to both 6.0 and 5.0 release streams and get
a 5.0 release with just this cherry picked ASAP for distros and vendors.
This patch is the work of a number of people over the past month: Eric, Reid,
Rui, and myself. I'm mailing it out as a single commit due to the time
sensitive nature of landing this and the need to backport it. Huge thanks to
everyone who helped out here, and everyone at Intel who helped out in
discussions about how to craft this. Also, credit goes to Paul Turner (at
Google, but not an LLVM contributor) for much of the underlying retpoline
design.
Reviewers: echristo, rnk, ruiu, craig.topper, DavidKreitzer
Subscribers: sanjoy, emaste, mcrosier, mgorny, mehdi_amini, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D41723
llvm-svn: 323155
Previously we always handled -defsym after other commands in command line.
That made impossible to overload values set by -defsym from linker script:
test.script:
foo = 0x22;
-defsym=foo=0x11 -script t.script
would always set foo to 0x11.
That is inconstent with common logic which allows to override command line
options. it is inconsistent with bfd behavior and seems breaks assumption that
-defsym is the same as linker script assignment, as -defsyms always handled out of
command line order.
Patch fixes the handling order.
Differential revision: https://reviews.llvm.org/D42054
llvm-svn: 322625
When we have --icf=safe we should be able to define --icf=all as a
shorthand for --icf=safe --ignore-function-address-equality.
For now --ignore-function-address-equality is used only to control
access to non preemptable symbols in shared libraries.
llvm-svn: 322152
If using a version script with a `local: *` in it, symbols in shared
libraries will still get default visibility if another shared library on
the link line has an undefined reference to the symbol. This is quite
surprising. Neither bfd nor gold have this behavior when linking a
shared library, and none of LLD's tests fail without this behavior, so
it seems safe to limit scanShlibUndefined to executables.
As far as executables are concerned, gold doesn't do any automatic
default visibility marking, and bfd issues a link error about a shared
library having a reference to a hidden symbol rather than silently
giving that symbol default visibility. I think bfd's behavior here is
preferable to LLD's, but that's something to be considered in a
follow-up.
Differential Revision: https://reviews.llvm.org/D41524
llvm-svn: 321578
We normally avoid "switch (Config->EKind)", but in this case I think
it is worth it.
It is only executed when there is an error and it allows detemplating
a lot of code.
llvm-svn: 321404
The ARM.exidx section contains a table of 8-byte entries with the first
word of each entry an offset to the function it describes and the second
word instructions for unwinding if an exception is thrown from that
function. The SHF_LINK_ORDER processing will order the table in ascending
order of the functions described by the exception table entries. As the
address range of an exception table entry is terminated by the next table
entry, it is possible to merge consecutive table entries that have
identical unwind instructions.
For this implementation we define a table entry to be identical if:
- Both entries are the special EXIDX_CANTUNWIND.
- Both entries have the same inline unwind instructions.
We do not attempt to establish if table entries that are references to
.ARM.extab sections are identical.
This implementation works at a granularity of a single .ARM.exidx
InputSection. If all entries in the InputSection are identical to the
previous table entry we can remove the InputSection. A more sophisticated
but more complex implementation would rewrite InputSection contents so that
duplicates within a .ARM.exidx InputSection can be merged.
Differential Revision: https://reviews.llvm.org/D40967
llvm-svn: 320803