Commit Graph

1470 Commits

Author SHA1 Message Date
Andrei Elovikov 1724a16437 [NFC][clang] Move IR-independent parts of target MV support to X86TargetParser.cpp
...that is located under llvm/lib/Support/.

Reviewed By: erichkeane

Differential Revision: https://reviews.llvm.org/D108423
2021-08-30 09:48:48 -07:00
Wang, Pengfei c728bd5bba [X86] AVX512FP16 instructions enabling 5/6
Enable FP16 FMA instructions.

Ref.: https://software.intel.com/content/www/us/en/develop/download/intel-avx512-fp16-architecture-specification.html

Reviewed By: LuoYuanke

Differential Revision: https://reviews.llvm.org/D105268
2021-08-24 09:07:19 +08:00
Andrei Elovikov f5c2889488 [NFC][clang] Use X86 Features declaration from X86TargetParser
...instead of redeclaring them in clang's own X86Target.def. They were already
required to be in sync (IIUC), so no reason to maintain two identical lists.

Reviewed By: erichkeane, craig.topper

Differential Revision: https://reviews.llvm.org/D108151
2021-08-23 12:30:28 -07:00
Simon Pilgrim 7f48bd3bed CGBuiltin.cpp - pass SVETypeFlags by const reference. NFC.
Don't pass the struct by value.
2021-08-22 12:13:17 +01:00
Wang, Pengfei b088536ce9 [X86] AVX512FP16 instructions enabling 4/6
Enable FP16 unary operator instructions.

Ref.: https://software.intel.com/content/www/us/en/develop/download/intel-avx512-fp16-architecture-specification.html

Reviewed By: LuoYuanke

Differential Revision: https://reviews.llvm.org/D105267
2021-08-22 08:59:35 +08:00
Thomas Lively 88962cea46 [WebAssembly] Restore builtins and intrinsics for pmin/pmax
Partially reverts 85157c0079, which had removed these builtins and intrinsics
in favor of normal codegen patterns. It turns out that it is possible for the
patterns to be split over multiple basic blocks, however, which means that DAG
ISel is not able to select them to the pmin/pmax instructions. To make sure the
SIMD intrinsics generate the correct instructions in these cases, reintroduce
the clang builtins and corresponding LLVM intrinsics, but also keep the normal
pattern matching as well.

Differential Revision: https://reviews.llvm.org/D108387
2021-08-20 09:21:31 -07:00
Martin Storsjö cc3affd8b0 [clang] [MSVC] Implement __mulh and __umulh builtins for aarch64
The code is based on the same __mulh and __umulh intrinsics for
x86.

This should fix PR51128.

Differential Revision: https://reviews.llvm.org/D106721
2021-08-19 11:29:55 +03:00
Arthur Eubanks 3f4d00bc3b [NFC] More get/removeAttribute() cleanup 2021-08-17 21:05:41 -07:00
Wang, Pengfei 2379949aad [X86] AVX512FP16 instructions enabling 3/6
Enable FP16 conversion instructions.

Ref.: https://software.intel.com/content/www/us/en/develop/download/intel-avx512-fp16-architecture-specification.html

Reviewed By: LuoYuanke

Differential Revision: https://reviews.llvm.org/D105265
2021-08-18 09:03:41 +08:00
Wang, Pengfei f1de9d6dae [X86] AVX512FP16 instructions enabling 2/6
Enable FP16 binary operator instructions.

Ref.: https://software.intel.com/content/www/us/en/develop/download/intel-avx512-fp16-architecture-specification.html

Reviewed By: LuoYuanke

Differential Revision: https://reviews.llvm.org/D105264
2021-08-15 08:56:33 +08:00
Wang, Pengfei 6f7f5b54c8 [X86] AVX512FP16 instructions enabling 1/6
1. Enable FP16 type support and basic declarations used by following patches.
2. Enable new instructions VMOVW and VMOVSH.

Ref.: https://software.intel.com/content/www/us/en/develop/download/intel-avx512-fp16-architecture-specification.html

Reviewed By: LuoYuanke

Differential Revision: https://reviews.llvm.org/D105263
2021-08-10 12:46:01 +08:00
Serge Pavlov 4c4093e6e3 Introduce intrinsic llvm.isnan
This is recommit of the patch 16ff91ebcc,
reverted in 0c28a7c990 because it had
an error in call of getFastMathFlags (base type should be FPMathOperator
but not Instruction). The original commit message is duplicated below:

    Clang has builtin function '__builtin_isnan', which implements C
    library function 'isnan'. This function now is implemented entirely in
    clang codegen, which expands the function into set of IR operations.
    There are three mechanisms by which the expansion can be made.

    * The most common mechanism is using an unordered comparison made by
      instruction 'fcmp uno'. This simple solution is target-independent
      and works well in most cases. It however is not suitable if floating
      point exceptions are tracked. Corresponding IEEE 754 operation and C
      function must never raise FP exception, even if the argument is a
      signaling NaN. Compare instructions usually does not have such
      property, they raise 'invalid' exception in such case. So this
      mechanism is unsuitable when exception behavior is strict. In
      particular it could result in unexpected trapping if argument is SNaN.

    * Another solution was implemented in https://reviews.llvm.org/D95948.
      It is used in the cases when raising FP exceptions by 'isnan' is not
      allowed. This solution implements 'isnan' using integer operations.
      It solves the problem of exceptions, but offers one solution for all
      targets, however some can do the check in more efficient way.

    * Solution implemented by https://reviews.llvm.org/D96568 introduced a
      hook 'clang::TargetCodeGenInfo::testFPKind', which injects target
      specific code into IR. Now only SystemZ implements this hook and it
      generates a call to target specific intrinsic function.

    Although these mechanisms allow to implement 'isnan' with enough
    efficiency, expanding 'isnan' in clang has drawbacks:

    * The operation 'isnan' is hidden behind generic integer operations or
      target-specific intrinsics. It complicates analysis and can prevent
      some optimizations.

    * IR can be created by tools other than clang, in this case treatment
      of 'isnan' has to be duplicated in that tool.

    Another issue with the current implementation of 'isnan' comes from the
    use of options '-ffast-math' or '-fno-honor-nans'. If such option is
    specified, 'fcmp uno' may be optimized to 'false'. It is valid
    optimization in general, but it results in 'isnan' always returning
    'false'. For example, in some libc++ implementations the following code
    returns 'false':

        std::isnan(std::numeric_limits<float>::quiet_NaN())

    The options '-ffast-math' and '-fno-honor-nans' imply that FP operation
    operands are never NaNs. This assumption however should not be applied
    to the functions that check FP number properties, including 'isnan'. If
    such function returns expected result instead of actually making
    checks, it becomes useless in many cases. The option '-ffast-math' is
    often used for performance critical code, as it can speed up execution
    by the expense of manual treatment of corner cases. If 'isnan' returns
    assumed result, a user cannot use it in the manual treatment of NaNs
    and has to invent replacements, like making the check using integer
    operations. There is a discussion in https://reviews.llvm.org/D18513#387418,
    which also expresses the opinion, that limitations imposed by
    '-ffast-math' should be applied only to 'math' functions but not to
    'tests'.

    To overcome these drawbacks, this change introduces a new IR intrinsic
    function 'llvm.isnan', which realizes the check as specified by IEEE-754
    and C standards in target-agnostic way. During IR transformations it
    does not undergo undesirable optimizations. It reaches instruction
    selection, where is lowered in target-dependent way. The lowering can
    vary depending on options like '-ffast-math' or '-ffp-model' so the
    resulting code satisfies requested semantics.

    Differential Revision: https://reviews.llvm.org/D104854
2021-08-06 14:32:27 +07:00
Anshil Gandhi 39dac1f7f6 [clang] Add clang builtins support for gfx90a
Implement target builtins for gfx90a including fadd64, fadd32, add2h,
max and min on various global, flat and ds address spaces for which
intrinsics are implemented.

Differential Revision: https://reviews.llvm.org/D106909
2021-08-05 02:08:06 -06:00
Serge Pavlov 0c28a7c990 Revert "Introduce intrinsic llvm.isnan"
This reverts commit 16ff91ebcc.
Several errors were reported mainly test-suite execution time. Reverted
for investigation.
2021-08-04 17:18:15 +07:00
Serge Pavlov 16ff91ebcc Introduce intrinsic llvm.isnan
Clang has builtin function '__builtin_isnan', which implements C
library function 'isnan'. This function now is implemented entirely in
clang codegen, which expands the function into set of IR operations.
There are three mechanisms by which the expansion can be made.

* The most common mechanism is using an unordered comparison made by
  instruction 'fcmp uno'. This simple solution is target-independent
  and works well in most cases. It however is not suitable if floating
  point exceptions are tracked. Corresponding IEEE 754 operation and C
  function must never raise FP exception, even if the argument is a
  signaling NaN. Compare instructions usually does not have such
  property, they raise 'invalid' exception in such case. So this
  mechanism is unsuitable when exception behavior is strict. In
  particular it could result in unexpected trapping if argument is SNaN.

* Another solution was implemented in https://reviews.llvm.org/D95948.
  It is used in the cases when raising FP exceptions by 'isnan' is not
  allowed. This solution implements 'isnan' using integer operations.
  It solves the problem of exceptions, but offers one solution for all
  targets, however some can do the check in more efficient way.

* Solution implemented by https://reviews.llvm.org/D96568 introduced a
  hook 'clang::TargetCodeGenInfo::testFPKind', which injects target
  specific code into IR. Now only SystemZ implements this hook and it
  generates a call to target specific intrinsic function.

Although these mechanisms allow to implement 'isnan' with enough
efficiency, expanding 'isnan' in clang has drawbacks:

* The operation 'isnan' is hidden behind generic integer operations or
  target-specific intrinsics. It complicates analysis and can prevent
  some optimizations.

* IR can be created by tools other than clang, in this case treatment
  of 'isnan' has to be duplicated in that tool.

Another issue with the current implementation of 'isnan' comes from the
use of options '-ffast-math' or '-fno-honor-nans'. If such option is
specified, 'fcmp uno' may be optimized to 'false'. It is valid
optimization in general, but it results in 'isnan' always returning
'false'. For example, in some libc++ implementations the following code
returns 'false':

    std::isnan(std::numeric_limits<float>::quiet_NaN())

The options '-ffast-math' and '-fno-honor-nans' imply that FP operation
operands are never NaNs. This assumption however should not be applied
to the functions that check FP number properties, including 'isnan'. If
such function returns expected result instead of actually making
checks, it becomes useless in many cases. The option '-ffast-math' is
often used for performance critical code, as it can speed up execution
by the expense of manual treatment of corner cases. If 'isnan' returns
assumed result, a user cannot use it in the manual treatment of NaNs
and has to invent replacements, like making the check using integer
operations. There is a discussion in https://reviews.llvm.org/D18513#387418,
which also expresses the opinion, that limitations imposed by
'-ffast-math' should be applied only to 'math' functions but not to
'tests'.

To overcome these drawbacks, this change introduces a new IR intrinsic
function 'llvm.isnan', which realizes the check as specified by IEEE-754
and C standards in target-agnostic way. During IR transformations it
does not undergo undesirable optimizations. It reaches instruction
selection, where is lowered in target-dependent way. The lowering can
vary depending on options like '-ffast-math' or '-ffp-model' so the
resulting code satisfies requested semantics.

Differential Revision: https://reviews.llvm.org/D104854
2021-08-04 15:27:49 +07:00
Kai Luo e4902e69e9 [PowerPC] Fix return type of XL compat CAS
`__compare_and_swap*` should return `i32` rather than `i1`.

Reviewed By: jsji

Differential Revision: https://reviews.llvm.org/D107077
2021-07-29 14:49:26 +00:00
Thomas Lively 33786576fd [WebAssembly] Codegen for extmul SIMD instructions
Replace the clang builtins and LLVM intrinsics for the SIMD extmul instructions
with normal codegen patterns.

Differential Revision: https://reviews.llvm.org/D106724
2021-07-27 08:41:30 -07:00
Nemanja Ivanovic 1c50a5da36 [PowerPC] Implement partial vector ld/st builtins for XL compatibility
XL provides functions __vec_ldrmb/__vec_strmb for loading/storing a
sequence of 1 to 16 bytes in big endian order, right justified in the
vector register (regardless of target endianness).
This is equivalent to vec_xl_len_r/vec_xst_len_r which are only
available on Power9.

This patch simply uses the Power9 functions when compiled for Power9,
but provides a more general implementation for Power8.

Differential revision: https://reviews.llvm.org/D106757
2021-07-26 13:19:52 -05:00
Thomas Lively 85157c0079 [WebAssembly] Codegen for pmin and pmax
Replace the clang builtins and LLVM intrinsics for {f32x4,f64x2}.{pmin,pmax}
with standard codegen patterns. Since wasm_simd128.h uses an integer vector as
the standard single vector type, the IR for the pmin and pmax intrinsic
functions contains bitcasts that would not be there otherwise. Add extra codegen
patterns that can still select the pmin and pmax instructions in the presence of
these bitcasts.

Differential Revision: https://reviews.llvm.org/D106612
2021-07-23 14:49:21 -07:00
Kai Luo e4ed93cb25 [PowerPC] Implement XL compatible behavior of __compare_and_swap
According to https://www.ibm.com/docs/en/xl-c-and-cpp-aix/16.1?topic=functions-compare-swap-compare-swaplp
XL's `__compare_and_swap` has a weird behavior that

> In either case, the contents of the memory location specified by addr are copied into the memory location specified by old_val_addr.

(unlike c11 `atomic_compare_exchange` specified in http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1548.pdf)

This patch let clang's implementation follow this behavior.

Reviewed By: jsji

Differential Revision: https://reviews.llvm.org/D106344
2021-07-23 01:16:02 +00:00
Thomas Lively 8af333cf1a [WebAssembly] Replace @llvm.wasm.popcnt with @llvm.ctpop.v16i8
Use the standard target-independent intrinsic to take advantage of standard
optimizations.

Differential Revision: https://reviews.llvm.org/D106506
2021-07-21 16:45:54 -07:00
Thomas Lively db7efcab7d [WebAssembly] Remove clang builtins for extract_lane and replace_lane
These builtins were added to capture the fact that the underlying Wasm
instructions return i32s and implicitly sign or zero extend the extracted lanes
in the case of the i8x16 and i16x8 variants. But we do sufficient optimizations
during code gen that these low-level details do not need to be exposed to users.

This commit replaces the use of the builtins in wasm_simd128.h with normal
target-independent vector code. As a result, we can switch the relevant
intrinsics to use functions rather than macros and can use more user-friendly
return types rather than trying to precisely expose the underlying Wasm types.
Note, however, that the generated LLVM IR is no different after this change.

Differential Revision: https://reviews.llvm.org/D106500
2021-07-21 16:11:00 -07:00
Thomas Lively 1a57ee1276 [WebAssembly] Codegen for v128.load{32,64}_zero
Replace the experimental clang builtins and LLVM intrinsics for these
instructions with normal instruction selection patterns. The wasm_simd128.h
intrinsics header was already using portable code for the corresponding
intrinsics, so now it produces the correct instructions.

Differential Revision: https://reviews.llvm.org/D106400
2021-07-21 09:02:12 -07:00
Quinn Pham e002d251dd [PowerPC] Floating Point Builtins for XL Compat.
This patch is in a series of patches to provide
builtins for compatibility with the XL compiler.
This patch adds builtins related to floating point
operations

Reviewed By: #powerpc, nemanjai, amyk, NeHuang

Differential Revision: https://reviews.llvm.org/D103986
2021-07-21 08:33:39 -05:00
Albion Fung 2fd1520247 [PowerPC] Implemented mtmsr, mfspr, mtspr Builtins
Implemented builtins for mtmsr, mfspr, mtspr on PowerPC;
the patch is intended for XL Compatibility.

Differential revision: https://reviews.llvm.org/D106130
2021-07-20 17:51:00 -05:00
Albion Fung 3434ac9e39 [PowerPC] Store, load, move from and to registers related builtins
This patch implements store, load, move from and to registers related
builtins, as well as the builtin for stfiw. The patch aims to provide
feature parady with xlC on AIX.

Differential revision: https://reviews.llvm.org/D105946
2021-07-20 15:46:14 -05:00
Victor Huang 1a762f93f8 [PowerPC] Add PowerPC cmpb builtin and emit target indepedent code for XL compatibility
This patch is in a series of patches to provide builtins for compatibility
with the XL compiler. This patch add the builtin and emit target independent
code for __cmpb.

Reviewed By: nemanjai, #powerpc

Differential revision: https://reviews.llvm.org/D105194
2021-07-20 13:06:22 -05:00
Quinn Pham fd855c24c7 [PowerPC] Restore FastMathFlags of Builder for Vector FDiv Builtins
This patch fixes `__builtin_ppc_recipdivf`, `__builtin_ppc_recipdivd`,
`__builtin_ppc_rsqrtf`, and `__builtin_ppc_rsqrtd`. FastMathFlags are
set to fast immediately before emitting these builtins. Now the flags
are restored to their previous values after the builtins are emitted.

Reviewed By: nemanjai, #powerpc

Differential Revision: https://reviews.llvm.org/D105984
2021-07-20 09:41:00 -05:00
Stefan Pintilie 02cd937945 [PowerPC][Builtins] Added a number of builtins for compatibility with XL.
Added a number of different builtins that exist in the XL compiler. Most of
these builtins already exist in clang under a different name.

Reviewed By: nemanjai, #powerpc

Differential Revision: https://reviews.llvm.org/D104386
2021-07-20 08:57:55 -05:00
Quinn Pham 0268e123be [PowerPC] swdiv_nochk Builtins for XL Compat
This patch is in a series of patches to provide builtins for
compatibility with the XL compiler. This patch adds software divide
builtins with no checking. These builtins are each emitted as a fast
fdiv.

Reviewed By: #powerpc, nemanjai

Differential Revision: https://reviews.llvm.org/D106150
2021-07-19 16:51:10 -05:00
Nikita Popov 2c68ecccc9 [OpaquePtr] Remove uses of CreateGEP() without element type
Remove uses of to-be-deprecated API. In cases where the correct
element type was not immediately obvious to me, fall back to
explicit getPointerElementType().
2021-07-17 22:56:27 +02:00
Nikita Popov 6d3e7c783b [OpaquePtr] Remove uses of CreateConstGEP1_32() without element type
Remove uses of to-be-deprecated API. I've fallen back to calling
getPointerElementType() in some cases where the correct type wasn't
immediately obvious to me.
2021-07-17 18:32:36 +02:00
Nemanja Ivanovic 35a18a981f [PowerPC] Implement intrinsics for mtfsf[i]
This provides intrinsics for emitting instructions that set the FPSCR (`mtfsf/mtfsfi`).

The patch also conservatively marks the rounding mode as an implicit def for both since they both may set the rounding mode depending on the operands.

Reviewed By: #powerpc, qiucf

Differential Revision: https://reviews.llvm.org/D105957
2021-07-16 16:26:11 -05:00
Victor Huang 4eb107ccba [PowerPC] Add PowerPC population count, reversed load and store related builtins and instrinsics for XL compatibility
This patch is in a series of patches to provide builtins for compatibility
with the XL compiler. This patch adds the builtins and instrisics for population
count, reversed load and store related operations.

Reviewed By: nemanjai, #powerpc

Differential revision: https://reviews.llvm.org/D106021
2021-07-15 17:23:56 -05:00
Artem Belevich d774b4aa5e [NVPTX, CUDA] Add .and.popc variant of the b1 MMA instruction.
That should allow clang to compile mma.h from CUDA-11.3.

Differential Revision: https://reviews.llvm.org/D105384
2021-07-15 12:02:09 -07:00
Quinn Pham de3956605a [PowerPC] Fix popcntb XL Compat Builtin for 32bit
This patch implements the `__popcntb` XL compatibility builtin for 32bit in the frontend and backend. This patch also updates tests for `__popcntb` and other XL Compat sync related builtins.

Reviewed By: #powerpc, nemanjai, amyk

Differential Revision: https://reviews.llvm.org/D105360
2021-07-15 13:19:47 -05:00
Victor Huang d40e8091bd [PowerPC] Add PowerPC rotate related builtins and emit target independent code for XL compatibility
This patch is in a series of patches to provide builtins for compatibility
with the XL compiler. This patch adds the builtins and emit target independent
code for rotate related operations.

Reviewed By: nemanjai, #powerpc

Differential revision: https://reviews.llvm.org/D104744
2021-07-15 10:23:54 -05:00
Thomas Lively 4a4229f70f [WebAssembly] Codegen for v128.storeX_lane instructions
Replace the experimental clang builtins and LLVM intrinsics for these
instructions with normal codegen patterns. Resolves PR50435.

Differential Revision: https://reviews.llvm.org/D106019
2021-07-14 16:15:25 -07:00
Thomas Lively 970e090010 [WebAssembly] Codegen for v128.loadX_lane instructions
Replace the experimental clang builtin and LLVM intrinsics for these
instructions with normal codegen patterns. Resolves PR50433.

Differential Revision: https://reviews.llvm.org/D105950
2021-07-14 11:31:53 -07:00
Albion Fung f1aca5ac96 [PowerPC] Fix L[D|W]ARX Implementation
LDARX and LWARX sometimes gets optimized out by the compiler
when it is critical to the correctness of the code. This inline asm generation
ensures that it preserved.

Differential Revision: https://reviews.llvm.org/D105754
2021-07-13 11:02:07 -05:00
Thomas Lively cbabfc63b1 [WebAssembly] Custom combines for f32x4.demote_zero_f64x2
Replace the clang builtin function and LLVM intrinsic for
f32x4.demote_zero_f64x2 with combines from normal SDNodes. Also add missing
combines for i32x4.trunc_sat_zero_f64x2_{s,u}, which share the same pattern.

Differential Revision: https://reviews.llvm.org/D105755
2021-07-12 10:32:18 -07:00
Thomas Lively e5220104d0 [WebAssembly] Custom combines for f64x2.promote_low_f32x4
Replace the clang builtin function and LLVM intrinsic previously used to select
the f64x2.promote_low_f32x4 instruction with custom combines from standard
SelectionDAG nodes. Implement the new combines to share code with the similar
combines for f64x2.convert_low_i32x4_{s,u}. Resolves PR50232.

Differential Revision: https://reviews.llvm.org/D105675
2021-07-09 18:59:29 -07:00
Hsiangkai Wang 593bf9b4de [Clang][RISCV] Implement vlseg and vlsegff.
Differential Revision: https://reviews.llvm.org/D103527
2021-07-07 13:44:40 +08:00
Xiang1 Zhang a39bb960fc [X86] Refine code of generating BB labels in Keylocker
Reviewed By: craig.topper

Differential Revision: https://reviews.llvm.org/D105336
2021-07-05 09:29:51 +08:00
Nikita Popov fabc17192e [IRBuilder] Add type argument to CreateMaskedLoad/Gather
Same as other CreateLoad-style APIs, these need an explicit type
argument to support opaque pointers.

Differential Revision: https://reviews.llvm.org/D105395
2021-07-04 12:17:59 +02:00
Yaxun (Sam) Liu 434bd5bf54 [AMDGPU] Add builtin functions image_bvh_intersect_ray
Reviewed by: Stanislav Mekhanoshin, Matt Arsenault

Differential Revision: https://reviews.llvm.org/D104946
2021-06-30 13:10:47 -04:00
Melanie Blower e773216f46 [clang][patch] Add builtin __arithmetic_fence and option fprotect-parens
This patch adds a new clang builtin, __arithmetic_fence. The purpose of the
builtin is to provide the user fine control, at the expression level, over
floating point optimization when -ffast-math (-ffp-model=fast) is enabled.
The builtin prevents the optimizer from rearranging floating point expression
evaluation. The new option fprotect-parens has the same effect on
parenthesized expressions, forcing the optimizer to respect the parentheses.

Reviewed By: aaron.ballman, kpn

Differential Revision: https://reviews.llvm.org/D100118
2021-06-30 09:58:06 -04:00
Steffen Larsen 3644726a78 [Clang][NVPTX] Add NVPTX intrinsics and builtins for CUDA PTX 6.5 and 7.0 WMMA and MMA instructions
Adds NVPTX builtins and intrinsics for the CUDA PTX `wmma.load`, `wmma.store`, `wmma.mma`, and `mma` instructions added in PTX 6.5 and 7.0.

PTX ISA description of

  - `wmma.load`: https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-instructions-wmma-ld
  - `wmma.store`: https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-instructions-wmma-st
  - `wmma.mma`: https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-instructions-wmma-mma
  - `mma`: https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-instructions-mma

Overview of `wmma.mma` and `mma` matrix shape/type combinations added with specific PTX versions: https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-shape

Authored-by: Steffen Larsen <steffen.larsen@codeplay.com>
Co-Authored-by: Stuart Adams <stuart.adams@codeplay.com>

Reviewed By: tra

Differential Revision: https://reviews.llvm.org/D104847
2021-06-29 15:44:07 -07:00
Akira Hatanaka 8d21d54725 [CodeGen] Stop creating fake FunctionDecls when generating IR for
functions implicitly generated by the compiler

These fake functions would cause clang to crash if the changes proposed
in https://reviews.llvm.org/D98799 were made.
2021-06-29 14:22:33 -07:00
Xiang1 Zhang 6d234a6908 [X86] Zero some outputs of Kelocker intrinsics in error case
Reviewed By: WangPengfei

Differential Revision: https://reviews.llvm.org/D104766
2021-06-29 13:35:40 +08:00