Range errors (dereferencing or incrementing the past-the-end iterator or
decrementing the iterator of the first element of the range) and access of
invalidated iterators lead to undefined behavior. There is no point to
continue the analysis after such an error on the same execution path, but
terminate it by a sink node (fatal error). This also improves the
performance and helps avoiding double reports (e.g. in case of nested
iterators).
Differential Revision: https://reviews.llvm.org/D62893
llvm-svn: 370314
Instead of blindly incrementing pointers in llvm-readobj, use this
helper, which does bounds checking against the available section
data.
Differential Revision: https://reviews.llvm.org/D66818
llvm-svn: 370310
Previously, the expression (Reader.readFoo()) was expanded twice,
triggering asserts as one of the Error types ends up not checked
(and as it was expanded twice, the method would end up called twice
if it failed first).
Differential Revision: https://reviews.llvm.org/D66817
llvm-svn: 370309
Summary:
Add event listener that listens to configuration changes and reloads the ThemeRuleMatcher when the theme changes.
Right now it will not recolor the files, depends on the colorizer CL for that.
Reviewers: hokein, ilya-biryukov
Subscribers: MaskRay, jkorous, arphaman, kadircet, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D66406
llvm-svn: 370305
We had an isel pattern to perform this, but its better to
do it in DAG combine as a simplification. This also fixes the lack
of patterns for AVX512 targets.
llvm-svn: 370294
Including a type legalizer fix to make bitcast operand promotion
work correctly when getSoftenedFloat returns f128 instead of i128.
Fixes PR43157
llvm-svn: 370293
We do not access the DT in the loop, so we do not have to apply updates
eagerly. We can apply them lazyly and flush them after we are done
merging blocks.
As follow-up work, we might be able to use the DTU above as well,
instead of manually updating the DT.
This brings the example from PR43134 from ~100s to ~4s for a relase +
assertions build on my machine.
Reviewers: efriedma, kuhar, asbirlea, brzycki
Reviewed By: kuhar, brzycki
Differential Revision: https://reviews.llvm.org/D66911
llvm-svn: 370292
Summary:
This is self-contained, and doesn't need anything in the
compiler to work. Mainly to reduce the diff between upstream
and downstream.
Patch by Kuba Mracek!
Reviewers: kubamracek
Subscribers: lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D66915
llvm-svn: 370286
SGPR spills aren't really handled after SILowerSGPRSpills. In order to
directly control what happens if the scavenger needs to spill, the
scavenger needs to be used directly. There is an alternative to
spilling in these contexts anyway since the frame register can be
increment and restored.
This does present another possible issue if spilling is needed for the
unused carry out if an add is needed. I think this can be avoided by
using a scalar add (although that clobbers SCC, which happens anyway).
llvm-svn: 370281
This is a special case because one node maps to two different G_
instructions, and the operand order is changed.
This mostly enables G_FCMP for AMDPGPU. G_ICMP is still manually
selected for now since it has the SALU and VALU complication to deal
with.
llvm-svn: 370280
This removes support for reading the LLDB_TEST_ARGUMENTS environment
variable and instead requires all arguments to be specified as part of
the invocation. This ensures that dotest.py invocations are easily
repeatable.
Differential revision: https://reviews.llvm.org/D66912
llvm-svn: 370278
Also add a FIXME because I'm not sure why these patterns exist. Looks like a missing combine.
And another FIXME because the AVX512 equivalent one of the patterns is missing.
llvm-svn: 370276
The patch fixed the issue that RV64 didn't clear the upper bits
when return complex floating value with lp64 ABI.
float _Complex
complex_add(float _Complex a, float _Complex b)
{
return a + b;
}
RealResult = zero_extend(RealA + RealB)
ImageResult = ImageA + ImageB
Return (RealResult | (ImageResult << 32))
The patch introduces shouldExtendTypeInLibCall target hook to suppress
the AssertZext generation when lowering floating LibCall.
Thanks to Eli's comments from the Bugzilla
https://bugs.llvm.org/show_bug.cgi?id=42820
Differential Revision: https://reviews.llvm.org/D65497
llvm-svn: 370275
Marking a module for a rebuild when its signature differs from the
expected one causes redundant module rebuilds for incremental builds.
When a module is updated, its signature changes. But its consumers still
have the old signature and loading them will result in signature
mismatches. It will correctly cause the rebuilds for the consumers but
we don't need to rebuild the common module for each of them as it is
already up to date.
In practice this bug causes longer build times. We are doing more work
than required and only a single process can build a module, so parallel
builds degrade to a single-process mode where extra processes are just
waiting on a file lock.
Fix by not marking a module dependency for a rebuild on signature
mismatch. We'll check if it is up to date when we load it.
rdar://problem/50212358
Reviewers: dexonsmith, bruno, rsmith
Reviewed By: dexonsmith, bruno
Subscribers: jkorous, ributzka, cfe-commits, aprantl
Differential Revision: https://reviews.llvm.org/D66907
llvm-svn: 370274
Due to a misstake with r365902 that tried to simplify the install with
toolchain logic LLVM-C.dll was no longer being installed.
Patch By: Jakob Bornecrantz
llvm-svn: 370271
Now that we can gracefully handle stack exhaustion, this test was passing in
darwin && asan. Instead, just unsupport it when threading is unavailable.
llvm-svn: 370270
If result of 64-bit address loading combines with 32-bit mask, LLVM
tries to optimize the code and remove "redundant" loading of upper
32-bits of the address. It leads to incorrect code on MIPS64 targets.
MIPS backend creates the following chain of commands to load 64-bit
address in the `MipsTargetLowering::getAddrNonPICSym64` method:
```
(add (shl (add (shl (add %highest(sym), %higher(sym)),
16),
%hi(sym)),
16),
%lo(%sym))
```
If the mask presents, LLVM decides to optimize the chain of commands. It
really does not make sense to load upper 32-bits because the 0x0fffffff
mask anyway clears them. After removing redundant commands we get this
chain:
```
(add (shl (%hi(sym), 16), %lo(%sym))
```
There is no patterns matched `(MipsHi (i64 symbol))`. Due a bug in `SYM_32`
predicate definition, backend incorrectly selects a pattern for a 32-bit
symbols and uses the `lui` instruction for loading `%hi(sym)`.
As a result we get incorrect set of instructions with unnecessary 16-bit
left shifting:
```
lui at,0x0
R_MIPS_HI16 foo
dsll at,at,0x10
daddiu at,at,0
R_MIPS_LO16 foo
```
This patch resolves two problems:
- Fix `SYM_32/SYM_64` predicates to prevent selection of patterns dedicated
to 32-bit symbols in case of using N64 ABI.
- Add missed patterns for 64-bit symbols for `%hi/%lo`.
Fix PR42736.
Differential Revision: https://reviews.llvm.org/D66228
llvm-svn: 370268
This argument was used by dosep.py to pass information around from the
workers. With dosep.py gone, I'm fairly sure we don't need this any
longer.
llvm-svn: 370266
...cloning a function from a different module
Currently when a function with debug info is cloned from a different module, the
cloned function may have hanging DICompileUnits, so that the module with the
cloned function fails debug info verification.
The proposed fix inserts all DICompileUnits reachable from the cloned function
to "llvm.dbg.cu" metadata operands of the cloned function module.
Reviewed By: aprantl, efriedma
Differential Revision: https://reviews.llvm.org/D66510
Patch by Oleg Pliss (Oleg.Pliss@azul.com)
llvm-svn: 370265