A utility predicate in semantics was incorrectly determining that
an INTERFACE ASSIGNMENT(=) (or other form of generic) could not have
a specific procedure with an unlimited polymorphic second argument.
This led to a crash later in expression analysis. Fix, and
extend tests.
Differential Revision: https://reviews.llvm.org/D126151
The purity or impurity of a call to a generic interface
depends on the attributes of the specific procedure or specific
binding. Change expression analysis of calls to generic interfaces
to replace the symbol in the parse tree with the specific procedure
or binding; this ensures that later checking for purity in
DO CONCURRENT and other contexts will be accurate.
Remove an "XFAIL" from a test that now passes again with this fix.
Differential Revision: https://reviews.llvm.org/D126150
Semantics was allowing calls to CHARACTER(*) functions, which are odd
things -- they can be declared, and passed around, but can never actually
be called as such. They must be redeclared with an explicit length that
ends up being passed as a hidden argument. So check for these calls
and diagnose them, add tests, and clean up some existing tests that
were in error and now get caught.
Possible TODO for lowering: there were some test cases that used
bad calls to assumed-length CHARACTER*(*) functions and validated
their implementations. I've removed some, and adjusted another,
but the code that somehow implemented these calls may need to be
removed and replaced with an assert about bad semantics.
Differential Revision: https://reviews.llvm.org/D126148
A dummy argument in an entry point of a subprogram with multiple
entry points need not be defined in other entry points. It is only
legal to reference such an argument when calling an entry point that
does have a definition. An entry point without such a definition
needs a local "substitute" definition sufficient to generate code.
It is nonconformant to reference such a definition at runtime.
Most such definitions and associated code will be deleted as dead
code at compile time. However, that is not always possible, as in
the following code. This code is conformant if all calls to entry
point ss set m=3, and all calls to entry point ee set n=3.
subroutine ss(a, b, m, d, k) ! no x, y, n
integer :: a(m), b(a(m)), m, d(k)
integer :: x(n), y(x(n)), n
integer :: k
1 print*, m, k
print*, a
print*, b
print*, d
if (m == 3) return
entry ee(x, y, n, d, k) ! no a, b, m
print*, n, k
print*, x
print*, y
print*, d
if (n /= 3) goto 1
end
integer :: xx(3), yy(5), zz(3)
xx = 5
yy = 7
zz = 9
call ss(xx, yy, 3, zz, 3)
call ss(xx, yy, 3, zz, 3)
end
Lowering currently generates fir::UndefOp's for all unused arguments.
This is usually ok, but cases such as the one here incorrectly access
unused UndefOp arguments for m and n from an entry point that doesn't
have a proper definition.
The problem is addressed by creating a more complete definition of an
unused argument in most cases. This is implemented in large part by
moving the definition of an unused argument from mapDummiesAndResults
to mapSymbolAttributes. The code in mapSymbolAttributes then chooses
one of three code generation options, depending on information
available there.
This patch deals with dummy procedures in alternate entries, and adds
a TODO for procedure pointers (the PFTBuilder is modified to analyze
procedure pointer symbol so that they are not silently ignored, and
instead hits proper TODOs).
BoxAnalyzer is also changed because assumed-sized arrays were wrongfully
categorized as constant shape arrays. This had no impact, except when
there were unused entry points.
Co-authored-by: jeanPerier <jperier@nvidia.com>
Differential Revision: https://reviews.llvm.org/D125867
Forward references to ENTRY names to pass them as actual procedure arguments
don't work in all cases, exposing some basic ordering problems in
name resolution for these symbols. Refactor; create all the
necessary procedure symbols, and either function result or host association
symbols (for subroutines), at the time that the subprogrma scope is
created, so that the names exist in the scope as text "before"
the ENTRY is processed in name resolution. Some processing
remains in PostEntryStmt() so that we can check that an ENTRY with
an explicit distinct RESULT doesn't also have declarations for the
ENTRY name.
Differential Revision: https://reviews.llvm.org/D126142
Intrinsic module names are not in the user's namespace, so they
are free to declare global names that conflict with intrinsic
modules.
Differential Revision: https://reviews.llvm.org/D126140
For the program provided as the test case flang fired the following
error:
error: Semantic errors in main.f90
error: 'foo' is not a procedure
This change fixes the error by postponing handling of `UseErrorDetails`
from `CharacterizeProcedure` to a later stage.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D125791
The types of lower bound, upper bound, and step are converted into the
type of the loop variable if necessary. OpenMP runtime requires 32-bit
or 64-bit loop variables. OpenMP loop iteration variable cannot have
more than 64 bits size and will be narrowed.
This patch is part of upstreaming code from the fir-dev branch of
https://github.com/flang-compiler/f18-llvm-project. (#1256)
Co-authored-by: kiranchandramohan <kiranchandramohan@gmail.com>
Reviewed By: kiranchandramohan, shraiysh
Differential Revision: https://reviews.llvm.org/D125740
When parallel is used in a combined construct, then use a separate
function to create the parallel operation. It handles the parallel
specific clauses and leaves the rest for handling at the inner
operations.
Reviewed By: peixin, shraiysh
Differential Revision: https://reviews.llvm.org/D125465
Co-authored-by: Sourabh Singh Tomar <SourabhSingh.Tomar@amd.com>
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Co-authored-by: Valentin Clement <clementval@gmail.com>
Co-authored-by: Nimish Mishra <neelam.nimish@gmail.com>
This patch basically extends https://reviews.llvm.org/D122008 with
support for MacOSX/Darwin.
To facilitate this, I've added `MacOSX` to the list of supported OSes in
Target.cpp. Flang already supports `Darwin` and it doesn't really do
anything OS-specific there (it could probably safely skip checking the
OS for now).
Note that generating executables remains hidden behind the
`-flang-experimental-exec` flag. Also, we don't need to add `-lm` on
MacOSX as `libm` is effectively included in `libSystem` (which is linked
in unconditionally).
Differential Revision: https://reviews.llvm.org/D125628
Convert Fortran parse-tree into MLIR for collapse-clause.
Includes simple Fortran to LLVM-IR test, with auto-generated
check-lines (some of which have been edited by hand).
Reviewed By: kiranchandramohan, shraiysh, peixin
Differential Revision: https://reviews.llvm.org/D125302
This change allows to write whitespaces before the `ERROR` keyword
in semantic tests for consistency with other testing infrastructure.
Also, one test is changed in order to test if the change works
correctly.
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D125884
`-module-dir` is Flang's equivalent for `-J` from GFortran (in fact,
`-J` is an alias for `-module-dir` in Flang). Currently, only
`-module-dir <value>` is accepted. However, `-J` (and other options for
specifying various paths) accepts `-J<value>` as well as `-J <value>`.
This patch makes sure that `-module-dir` behaves consistently with other
such flags.
Differential Revision: https://reviews.llvm.org/D125957
Add a test with standard-conforming non-conforming lcobound()
intrinsic function invocations. Also test that several
non-conforming lcobound() invocations generate the correct error
messages.
Differential Revision: https://reviews.llvm.org/DD123747
Add support for reading response files in the flang driver. Response
files contain command line arguments and are used whenever a command
becomes longer than the shell/environment limit. Response files are
recognized via the special "@path/to/response/file.rsp" syntax, which
distinguishes them from other file inputs.
This patch hardcodes GNU tokenization, since we don't have a CL mode for
the driver. In the future we might want to add a --rsp-quoting command
line option, like clang has, to accommodate Windows platforms.
Differential Revision: https://reviews.llvm.org/D124846
The previous fix from af371f9f98 only applied when using a bottom-up
traversal. The change here applies the constant preprocessing logic to the
top-down case as well. This resolves the issue with the canonicalizer pass still
reordering constants, since it uses a top-down traversal by default.
Fixes#51892
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D125623
As Fortran 2018 15.8.1(3), in a reference to an elemental procedure, if
any argument is an array, each actual argument that corresponds to an
INTENT (OUT) or INTENT (INOUT) dummy argument shall be an array. Add
this semantic check.
Reviewed By: klausler
Differential Revision: https://reviews.llvm.org/D125685
This supports the lowering parse-tree to MLIR for ordered clause in
worksharing-loop directive. Also add the test case for operation
conversion.
Part of this patch is from the fir-dev branch of
https://github.com/flang-compiler/f18-llvm-project.
Co-authored-by: Sourabh Singh Tomar <SourabhSingh.Tomar@amd.com>
Reviewed By: kiranchandramohan, NimishMishra
Differential Revision: https://reviews.llvm.org/D125456
This was carry over from LLVM IR where the alias definition can
be ambiguous, but MLIR type aliases have no such problems.
Having the `type` keyword is superfluous and doesn't add anything.
This commit drops it, which also nicely aligns with the syntax for
attribute aliases (which doesn't have a keyword).
Differential Revision: https://reviews.llvm.org/D125501
Complex component references (z%RE, z%IM) of complex named constants
should be evaluated at compilation time.
Differential Revision: https://reviews.llvm.org/D125341
Fortran 2018 requires that a compiler allow objects whose rank + corank
is 15, and that's our maximum; detect and diagnose violations.
Differential Revision: https://reviews.llvm.org/D125153
Evaluate real-valued references to the intrinsic functions MODULO
and MOD at compilation time without recourse to an external math
library.
Differential Revision: https://reviews.llvm.org/D125151
Fold references to the intrinsic function DIM with constant real
arguments. And clean up folding of comparisons with NaNs to address
a problem noticed in testing -- NaNs should successfully compare
unequal to all values, including themselves, instead of failing all
comparisons.
Differential Revision: https://reviews.llvm.org/D125146
This patch adds lowering for task construct from Fortran to
`omp.task` operation in OpenMPDialect Dialect (mlir). Also added tests
for the same.
Reviewed By: kiranchandramohan, peixin
Differential Revision: https://reviews.llvm.org/D124138
In a function, ENTRY E without an explicit RESULT() creates a
function result entity also named E that is storage associated with
the enclosing function's result. f18 was emitting an incorrect error
message if that function result E was referenced without any
declaration prior to its ENTRY statement when it should have been
implicitly declared instead.
Differential Revision: https://reviews.llvm.org/D125144
As is already supported for dummy procedures, we need to also accept
declarations of procedure pointers that consist of a POINTER attribute
statement followed by an INTERFACE block. (The case of an INTERFACE
block followed by a POINTER statement already works.)
While cleaning this case up, adjust the utility predicate IsProcedurePointer()
to recognize it (namely a SubprogramDetails symbol with Attr::POINTER)
and delete IsProcName(). Extend tests, and add better comments to
symbol.h to document the two ways in which procedure pointers are
represented.
Differential Revision: https://reviews.llvm.org/D125139
The semantic test for an intrinsic assignment to a polymorphic
derived type entity from a type that is an extension of its base
type was reversed, so it would allow assignments that it shouldn't
and disallowed some that it should; and the test case for it
incorectly assumed that the invalid semantics were correct.
Fix the code and the test, and add a new test for the invalid
case (LHS type is an extension of the RHS type).
Differential Revision: https://reviews.llvm.org/D125135
The rules in the Fortran standard for specification expressions
are full of special cases and exceptions, and semantics didn't get
them exactly right. It is valid to refer to an INTENT(OUT) dummy
argument in a specification expression in the context of a
specification inquiry function like SIZE(); it is not valid to
reference an OPTIONAL dummy argument outside of the context of
PRESENT. This patch makes the specification expression checker
a little context-sensitive about whether it's examining an actual
argument of a specification inquiry intrinsic function or not.
Differential Revision: https://reviews.llvm.org/D125131
DATA statements in inner procedures were not treating undeclared objects
as implicitly declared variables if the DATA statement appeared in a
specification part; they were treated as host-associated symbols instead.
This was incorrect. Fix DATA statement name resolution to always treat
DATA as if it had appeared in the executable part.
Differential Revision: https://reviews.llvm.org/D125129
A disassociated procedure pointer is allowed to be passed as an absent
actual argument that corresponds to an optional dummy procedure,
but not NULL(); accept that case as well.
Differential Revision: https://reviews.llvm.org/D125127
The type compatibility checks for the ARRAY= argument and the dummy
arguments and result of the OPERATION= argument to the REDUCE intrinsic
function need to allow for parameterized data types with LEN parameters.
(Their values are required to be identical but this is not a numbered
constraint requiring a compilation time check).
Differential Revision: https://reviews.llvm.org/D125124
Structure contructors for instances of parameterized derived types
must have their components' values folded in the context of the values
of the type parameters.
Differential Revision: https://reviews.llvm.org/D125116
Actual arguments whose lengths are less than the expected length
of their corresponding dummy argument are errors; but this needs
to be refined. Short actual arguments that are variables remain
errors, but those that are expressions can be (again) extended on
the right with blanks.
Differential Revision: https://reviews.llvm.org/D125115
The construction of the dimension order vector used to populate the
result array was incorrect, leading to a scrambled-looking result
for rank-3 and higher results. Fix, and extend tests.
Differential Revision: https://reviews.llvm.org/D125113
The standard requires that the operands of the intrinsic function
SIGN() must have the same type (INTEGER or REAL), but they are not
required to have the same kind.
Differential Revision: https://reviews.llvm.org/D125105
The related real number system inquiry functions SPACING()
and RRSPACING() can be folded for constant arguments.
See 16.9.164 & 16.9.180 in Fortran 2018.
Differential Revision: https://reviews.llvm.org/D125100
When the result can be known at compilation time, fold it.
Success depends on whether the operands are polymorphic.
When neither one is polymorphic, the result is known and can
be either .TRUE. or .FALSE.; when either one is polymorphic,
a .FALSE. result still can be discerned.
Differential Revision: https://reviews.llvm.org/D125062
When processing an entry-stmt in name resolution, attrs_ was
reset before SetBindNameOn was called, causing the symbol to lose
the binding label information.
Differential Revision: https://reviews.llvm.org/D125097
As Fortran 2018 5.2.2 states, a program shall consist of exactly one
main program. Add this semantic check.
Reviewed By: klausler
Differential Revision: https://reviews.llvm.org/D125186
This was leftover from when the standard dialect was destroyed, and
when FuncOp moved to the func dialect. Now that these transitions
have settled a bit we can drop these.
Most updates were handled using a simple regex: replace `^( *)func` with `$1func.func`
Differential Revision: https://reviews.llvm.org/D124146
The code below causes flang to crash with an exception.
After fixing the crash flang with an internal error "no symbol found for 'bar'"
This change fixes all the issues.
program name
implicit none
integer, parameter :: bar = 1
integer foo(bar) /bar*2/
end program name
Reviewed By: kiranchandramohan, klausler
Differential Revision: https://reviews.llvm.org/D124914
As Fortran 2018 states, in each where-assignment-stmt, the mask-expr and
the variable being defined shall be arrays of the same shape. The
previous check does not consider checking if it is an array.
Reviewed By: klausler
Differential Revision: https://reviews.llvm.org/D125022
As Fortran 2018 15.5.2.9 point 2, the actual argument and dummy argument
have the same type and type parameters and an external function with
assumed character length may be associated with a dummy argument with
explicit character length. As Fortran 2018 15.5.2.9 point 7, if an
external procedure is used as an actual argument, it can be explicitly
declared to have the EXTERNAL attribute. This supports the external
procedure passed as actual argument with implicit character type, either
explicit character length or assumed character length.
Reviewed By: Jean Perier, klausler
Differential Revision: https://reviews.llvm.org/D124345
For arrays without a constant interior or arrays of character with
dynamic length arrays, the data types are converted to a pointer to the
element type, so the scale size of the constant extents needs to be
counted. The previous AllocaOp conversion does not consider the arrays
of character with dynamic length arrays, and the previous AllocMemOp
conversion does not consider arrays without a constant interior. This
fixes them and refactors the code so that it can be shared. Also add
the test cases.
Reviewed By: Jean Perier
Differential Revision: https://reviews.llvm.org/D124766
The OpenMP worksharing loop operation in the dialect is a proper loop
operation and not a container of a loop. So we have to lower the
parse-tree OpenMP loop construct and the do-loop inside the construct
to a omp.wsloop operation and there should not be a fir.do_loop inside
it. This is achieved by skipping fir.do_loop creation and calling genFIR
for the nested evaluations in the lowering of the do construct.
Note: Handling of more clauses, parallel do, storage of loop index variable etc will come in separate patches.
Part of the upstreaming effort to move LLVM Flang from fir-dev branch of
https://github.com/flang-compiler/f18-llvm-project to the LLVM Project.
Reviewed By: peixin
Differential Revision: https://reviews.llvm.org/D125024
Co-authored-by: Sourabh Singh Tomar <SourabhSingh.Tomar@amd.com>
Co-authored-by: Shraiysh Vaishay <Shraiysh.Vaishay@amd.com>
The FIR `do_loop` is designed as a structured operation with a single
block inside it. Presence of unstructured constructs like jumps, exits
inside the loop will cause the loop to be marked as unstructured. These
loops are lowered using the `control-flow` dialect branch operations.
Fortran semantics do not allow the loop variable to be modified inside
the loop. To prevent accidental modification, the iteration of the
loop is modeled by two variables, trip-count and loop-variable.
-> The trip-count and loop-variable are initialized in the pre-header.
The trip-count is set as (end-start+step)/step where end, start and
step have the usual meanings. The loop-variable is initialized to start.
-> The header block contains a conditional branch instruction which
selects between branching to the body of the loop or the exit block
depending on the value of the trip-count.
-> Inside the body, the trip-count is decremented and the loop-variable
incremented by the step value. Finally it branches to the header of the
loop.
Part of the upstreaming effort to move LLVM Flang from fir-dev branch of
https://github.com/flang-compiler/f18-llvm-project to the LLVM Project.
Reviewed By: awarzynski
Differential Revision: https://reviews.llvm.org/D124837
Co-authored-by: Val Donaldson <vdonaldson@nvidia.com>
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Co-authored-by: Jean Perier <jperier@nvidia.com>
Co-authored-by: Peter Klausler <pklausler@nvidia.com>
This patch adds support for `-save-temps` in `flang-new`, Flang's
compiler driver. The semantics of this option are inherited from Clang.
The file extension for temporary Fortran preprocessed files is set to
`i`. This is identical to what Clang uses for C (or C++) preprocessed
files. I have tried researching what other compilers do here, but I
couldn't find any definitive answers. One GFortran thread [1] suggests
that indeed it is not clear what the right approach should be.
Normally, various phases in Clang/Flang are combined. The `-save-temps`
option works by forcing the compiler to run every phase separately. As
there is no integrated assembler driver in Flang, user will have to use
`-save-temps` together with `-fno-integrated-as`. Otherwise, an
invocation to the integrated assembler would be generated generated,
which is going to fail (i.e. something equivalent to `clang -cc1as` from
Clang).
There are no specific plans for implementing an integrated assembler for
Flang for now. One possible solution would be to share it entirely with
Clang.
Note that on Windows you will get the following error when using
`-fno-integrated-as`:
```bash
flang-new: error: there is no external assembler that can be used on this platform
```
Unfortunately, I don't have access to a Windows machine to investigate
this. Instead, I marked the tests in this patch as unsupported on
Windows.
[1] https://gcc.gnu.org/bugzilla//show_bug.cgi?id=81615
Differential Revision: https://reviews.llvm.org/D124669
This seems to be the consensus in
https://github.com/flang-compiler/f18-llvm-project/issues/1316
The patch adds ExternalNameConversion to the default FIR CodeGen pass
pipeline, right before the FIRtoLLVM pass. It also adds a flag to
optionally disable it, and sets it in `tco`. In other words, `flang-new`
and `flang-new -fc1` will both run the pass by default, whereas `tco`
will not, so none of the tests need to be updated.
Differential Revision: https://reviews.llvm.org/D121171
The fallback attribute parse path is parsing a Type attribute, but this results
in a really unintuitive error message: `expected non-function type`, which
doesn't really hint at tall that we were trying to parse an attribute. This
commit fixes this by trying to optionally parse a type, and on failure
emitting an error that we were expecting an attribute.
Differential Revision: https://reviews.llvm.org/D124870
In https://reviews.llvm.org/D124667, I added tests that check the
generated assembly. I verified the assembly on AArch64 and X86_64, but
the PPC Flang buildbot [1] started failing (i.e. the assembly was not
generic enough).
In order to fix this, I'm changing these tests to be only run on
AAarch64 - that's the architecture that most of public Flang buildbots
use.
I'm hoping that this is straightforward enough and am merging it without
a review.
[1] https://lab.llvm.org/buildbot/#/builders/21/builds/40256
This change makes sure that Flang's driver recognises LLVM IR and BC as
supported file formats. To this end, `isFortran` is extended and renamed
as `isSupportedByFlang` (the latter better reflects the new
functionality).
New tests are added to verify that the target triple is correctly
overridden by the frontend driver's default value or the value specified
with `-triple`. Strictly speaking, this is not a functionality that's
new in this patch (it was added in D124664). This patch simply enables
us to write such tests and hence I'm including them here.
Differential Revision: https://reviews.llvm.org/D124667
When we pass an alternate return specifier to a regular (not an asterisk)
dummy argument, flang would throw an internal compiler error of
derefencing a null pointer.
To avoid the ICE, a check was added.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D123947
The RETURN statement is allowed in functions and subroutines, but not
in main programs. It is however a common extension, which we also
implement, to allow RETURN from main programs -- we only issue a
portability warning when -pedantic or -std=f2018 are set.
This patch fixes false positives for this portability warning, where it
was triggered also when RETURN was present in functions or subroutines.
Fixexs #55080
Reviewed By: PeteSteinfeld
Differential Revision: https://reviews.llvm.org/D124732
This patch restricts the value of `if` clause expression to an I1 value.
It also restricts the value of `num_threads` clause expression to an I32
value.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D124142
As Fortran 2018 C1533, a nonintrinsic elemental procedure shall not be
used as an actual argument. The semantic check for implicit iterface is
missed.
Reviewed By: klausler
Differential Revision: https://reviews.llvm.org/D124379
Semantics is not preventing a named common block to appear with
different size in a same file (named common block should always have
the same storage size (see Fortran 2018 8.10.2.5), but it is a common
extension to accept different sizes).
Lowering was not coping with this well, since it just use the first
common block appearance, starting with BLOCK DATAs to define common
blocks (this also was an issue with the blank common block, which can
legally appear with different size in different scoping units).
Semantics is also not preventing named common from being initialized
outside of a BLOCK DATA, and lowering was dealing badly with this,
since it only gave an initial value to common blocks Globals if the
first common block appearance, starting with BLOCK DATAs had an initial
value.
Semantics is also allowing blank common to be initialized, while
lowering was assuming this would never happen, and was never creating
an initial value for it.
Lastly, semantics was not complaining if a COMMON block was initialized
in several scoping unit in a same file, while lowering can only generate
one of these initial value.
To fix this, add a structure to keep track of COMMON block properties
(biggest size, and initial value if any) at the Program level. Once the
size of a common block appearance is know, the common block appearance
is checked against this information. It allows semantics to emit an error
in case of multiple initialization in different scopes of a same common
block, and to warn in case named common blocks appears with different
sizes. Lastly, this allows lowering to use the Program level info about
common blocks to emit the right GlobalOp for a Common Block, regardless
of the COMMON Block appearances order: It emits a GlobalOp with the
biggest size, whose lowest bytes are initialized with the initial value
if any is given in a scope where the common block appears.
Lowering is updated to go emit the common blocks before anything else so
that the related GlobalOps are available when lowering the scopes where
common block appear. It is also updated to not assume that blank common
are never initialized.
Differential Revision: https://reviews.llvm.org/D124622
This patch adds code to lower simple Fortran Do loops with loop control.
Lowering is performed by the the `genFIR` function when called with a
`Fortran::parser::DoConstruct`. `genFIR` function calls `genFIRIncrementLoopBegin`
then calls functions to lower the body of the loop and finally calls
the function `genFIRIncrementLoopEnd`. `genFIRIncrementLoopBegin` is
responsible for creating the FIR `do_loop` as well as storing the value of
the loop index to the loop variable. `genFIRIncrementLoopEnd` returns
the incremented value of the loop index and also stores the index value
outside the loop. This is important since the loop variable can be used
outside the loop. Information about a loop is collected in a structure
`IncrementLoopInfo`.
Note 1: Future patches will bring in lowering for unstructured,
infinite, while loops
Note 2: This patch is part of upstreaming code from the fir-dev branch of
https://github.com/flang-compiler/f18-llvm-project.
Reviewed By: awarzynski
Differential Revision: https://reviews.llvm.org/D124277
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Co-authored-by: Jean Perier <jperier@nvidia.com>
Co-authored-by: Val Donaldson <vdonaldson@nvidia.com>
Co-authored-by: Peter Klausler <pklausler@nvidia.com>
Co-authored-by: Valentin Clement <clementval@gmail.com>
Previously MASK= elements were accessed in assumption that mask is an array of
input argument rank (and in combination with explicit DIM= argument we had
out-of-bounds access), but for MAXLOC/MINLOC/FINDLOC mask should be be
conformable and could be scalar.
Add new regression tests with scalar mask for verification.
Reviewed By: klausler
Differential Revision: https://reviews.llvm.org/D124408
This patch provides the basic infrastructure for lowering declarative
constructs for OpenMP and OpenACC.
This is part of the upstreaming effort from the fir-dev branch in [1].
[1] https://github.com/flang-compiler/f18-llvm-project
Reviewed By: kiranchandramohan, shraiysh, clementval
Differential Revision: https://reviews.llvm.org/D124225
A non-CHARACTER expression in a CASE statement is allowed to have
a distinct kind (not type) from the expression in its SELECT CASE.
If a value in a CASE statement is out of range for the SELECT CASE
type, emit a warning, but it should not be a fatal error.
Differential Revision: https://reviews.llvm.org/D124544
Similarly to LBOUND in https://reviews.llvm.org/D123237, fix UBOUND() folding
for constant arrays (for both w/ and w/o DIM=): convert
GetConstantArrayLboundHelper into common helper class for both lower/upper
bounds.
Reviewed By: jeanPerier
Differential Revision: https://reviews.llvm.org/D123520
Lowering of FailImage statement generates a runtime call and the
unreachable operation. The unreachable operation cannot terminate
a structured operation like the IF operation, hence mark as
unstructured.
Note: This patch is part of upstreaming code from the fir-dev branch of
https://github.com/flang-compiler/f18-llvm-project.
Reviewed By: clementval
Differential Revision: https://reviews.llvm.org/D124520
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
At the top level of program units in a source file, two subprograms
are allowed to have the same name if at least one of them has a
distinct interoperable binding name. F18's symbol table requires
(most) symbols in a scope to have distinct names, though. Solve
by using compiler-created names for the symbols of global scope
subprograms that have interoperable binding names.
Differential Revision: https://reviews.llvm.org/D124295
This patch adds 2 missing items required for `flang-new` to be able to
generate executables:
1. The Fortran_main runtime library, which implements the main entry
point into Fortran's `PROGRAM` in Flang,
2. Extra linker flags to include Fortran runtime libraries (e.g.
Fortran_main).
Fortran_main is the bridge between object files generated by Flang and
the C runtime that takes care of program set-up at system-level. For
every Fortran `PROGRAM`, Flang generates the `_QQmain` function.
Fortran_main implements the C `main` function that simply calls
`_QQmain`.
Additionally, "<driver-path>/../lib" directory is added to the list of
search directories for libraries. This is where the required runtime
libraries are currently located. Note that this the case for the build
directory. We haven't considered installation directories/targets yet.
With this change, you can generate an executable that will print `hello,
world!` as follows:
```bash
$ cat hello.f95
PROGRAM HELLO
write(*, *) "hello, world!"
END PROGRAM HELLO
$ flang-new -flang-experimental-exec hello.f95
./a.out
hello, world!
```
NOTE 1: Fortran_main has to be a static library at all times. It invokes
`_QQmain`, which is the main entry point generated by Flang for the
given input file (you can check this with `flang-new -S hello.f95 -o - |
grep "Qmain"`). This means that Fortran_main has an unresolved
dependency at build time. The linker will allow this for a static
library. However, if Fortran_main was a shared object, then the linker
will produce an error: `undefined symbol: `_QQmain`.
NOTE 2: When Fortran runtime libraries are generated as shared libraries
(excluding Fortran_main, which is always static), you will need to
tell the dynamic linker (by e.g. tweaking LD_LIBRARY_PATH) where to look
for them when invoking the executables. For example:
```bash
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:<flang-build-dir>/lib/ ./a.out
```
NOTE 3: This feature is considered experimental and currently guarded
with a flag: `-flang-experimental-exec`.
Differential Revision: https://reviews.llvm.org/D122008
[1] https://github.com/flang-compiler/f18-llvm-project
CREDITS: Fortran_main was originally written by Eric Schweitz, Jean
Perier, Peter Klausler and Steve Scalpone in the fir-dev` branch in [1].
Co-authored-by: Eric Schweitz <eschweitz@nvidia.com>
Co-authored-by: Peter Klausler <pklausler@nvidia.com>
Co-authored-by: Jean Perier <jperier@nvidia.com>
Co-authored-by: Steve Scalpone <sscalpone@nvidia.com
The lowering code was mistakenly assuming that the second argument
in the signature provided by semantics is the DIM argument. This
caused calls with a KIND argument but no DIM to be lowered as if the
KIND argument was DIM.
Differential Revision: https://reviews.llvm.org/D124243
In some case the lowering of `ichar` is generating an `arith.extui` operation
with the same from/to type. This operation do not accept from/to types to be
the same. If the from/to types are identical, we do not generate the extra
operation.
Reviewed By: jeanPerier
Differential Revision: https://reviews.llvm.org/D124107
Transformational bessel intrinsic functions require the same math runtime
as elemental bessel intrinsics.
Currently elemental bessels could be folded if f18 was linked with pgmath
(cmake -DLIBPGMATH_DIR option). `j0`, `y0`, ... C libm functions were not
used because they are not standard C functions: they are Posix
extensions.
This patch enable:
- Using the Posix bessel host runtime functions when available.
- folding the transformational bessel using the elemental version.
Differential Revision: https://reviews.llvm.org/D124167
The following code causes the compiler to ICE in several places due to
lack of support of recursive procedure definitions through the function
result.
function foo() result(r)
procedure(foo), pointer :: r
end function foo
This patch adds lowering support for atomic read and write constructs.
Also added is pointer modelling code to allow FIR pointer like types to
be inferred and converted while lowering.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D122725
Co-authored-by: Kiran Chandramohan <kiran.chandramohan@arm.com>
This patch handles empty hint value for critical and atomic constructs.
This also adds checks and tests for hint clause on atomic constructs.
Reviewed By: peixin, kiranchandramohan, NimishMishra
Differential Revision: https://reviews.llvm.org/D123186
When known at compile time, Ew.d and Dw.d output edit descriptors
should respect limitations from the standard on the value of a
kP scale factor with respect to the digit count (d), at least for
values of k other than zero.
Set LBOUND() constant folding for parentheses expr. as ones
Array bounds should not propagate throught omitted bounds specifications or
temporary variables - fix constant folding in case of Parentheses<T> expression
by explicitly returning array of ones (or scalar in case of DIM=).
Add set of tests for (x) bounds checks (w/ and w/o 'parameter' arrays)
Reviewed By: jeanPerier
Differential Revision: https://reviews.llvm.org/D123838
Previously constant folding uses 'dim' without checks which leads to ICE if we
do not have DIM= parameter. And for inputs without DIM= we need to form an
array of rank size with computed bounds instead of single value.
Add additional PackageConstant function to simplify 'if (dim)' handling since we
need to distinguish between scalar initialization in case of DIM= argument and
rank=1 array.
Also add a few more tests with 'parameter' type to verify folding for constant
arrays.
Reviewed By: jeanPerier
Differential Revision: https://reviews.llvm.org/D123237
A missing "!" in the call interface lowering caused all derived type
arguments without length parameters that require and explicit interface
to be passed via fir.box (runtime descriptor).
This was not the intent: there is no point passing a simple derived type
scalars or explicit shapes by descriptor just because they have an attribute
like TARGET. This would actually be problematic with existing code that is
not always 100% compliant: some code implicitly calls procedures with
TARGET dummy attributes (this is not something a compiler can enforce
if the call and procedure definition are not in the same file).
Add a Scope::IsDerivedTypeWithLengthParameter to avoid passing derived
types with only kind parameters by descriptor. There is no point, the
callee knows about the kind parameter values.
Differential Revision: https://reviews.llvm.org/D123990
A POINTER attribute statement is allowed to add the POINTER attribute
to a procedure entity that has already been declared, e.g. with an
INTERFACE block.
Differential Revision: https://reviews.llvm.org/D123732
f18 was emitting a warning about short character actual arguments to
subprograms and statement functions; every other compiler considers this
case to be an error.
Differential Revision: https://reviews.llvm.org/D123731
For parameterized derived type component initializers whose
expressions' types depend on parameter values, f18's current
scheme of analyzing the initialization expression once during
name resolution fails. For example,
type :: pdt(k)
integer, kind :: k
real :: component = real(0.0, kind=k)
end type
To handle such cases, it is necessary to re-analyze the parse
trees of these initialization expressions once for each distinct
initialization of the type.
This patch adds code to wipe an expression parse tree of its
typed expressions, and update those of its symbol table pointers
that reference type parameters, and then re-analyze that parse
tree to generate the properly typed component initializers.
Differential Revision: https://reviews.llvm.org/D123728
When a procedure pointer or procedure dummy argument has a
defined interface, the rank of the pointer (or dummy) is the
rank of the interface.
Also tweak code discovered in shape analysis when investigating
this problam so that it returns a vector of emptied extents rather
than std::nullopt when the extents are not scope-invariant, so that
the rank can at least be known.
Differential Revision: https://reviews.llvm.org/D123727
Items in NAMELIST groups might be host-associated implicitly-typed
variables, but name resolution can't know that when the NAMELIST
appears in a specification part and the host's execution part has
not yet been analyzed. So defer NAMELIST group item name resolution
to the end of the execution part. This is safe because nothing
else in name resolution depends on whether a variable is in a
NAMELIST group or not.
Differential Revision: https://reviews.llvm.org/D123723
Construct entities from ASSOCIATE, SELECT TYPE, and SELECT RANK
are modifiable if the are associated with modifiable variables
without vector subscripts. Update WhyNotModifiable() to accept
construct entities that are appropriate.
A need for more general error reporting from one overload of
WhyNotModifiable() caused its result type to change to
std::optional<parser::Message> instead of ::MessageFixedText,
and this change had some consequences that rippled through
call sites.
Some test results that didn't allow for modifiable construct
entities needed to be updated.
Differential Revision: https://reviews.llvm.org/D123722
TYPE IS and CLASS IS guards in SELECT TYPE constructs are
allowed to specify the same type as the type of the selector
but f18's implementation of that predicate required strict
equality of the derived type representations. We need to
allow for assumed values of LEN type parameters to match
explicit and deferred type parameter values in the selector
and require equality for KIND type parameters. Implement
DerivedTypeSpec::Match() to perform this more relaxed type
comparison, and use it in check-select-type.cpp.
Differential Revision: https://reviews.llvm.org/D123721
It is possible for generic interfaces of equivalent (but not necessarily
identical -- operator(.eq.) is equivalent to operator(==)) names to
be declared in a host scope and a nested scope, and the nested declaration
should function as an extension of the host's.
Differential Revision: https://reviews.llvm.org/D123719
Fortran allows a generic interface to have he same name as an
intrinsic procedure. If the intrinsic is explicitly marked with
the INTRINSIC attribute, restrictions apply (C848) - the generic
must contain only functions or subroutines, depending on the
intrinsic. Explicit or not, the generic overrides the intrinsic,
but the intrinsic behavior must still be available for calls
whose actual arguments do not match any of the specific procedures.
Semantics was not checking constraint C848, and it didn't allow
an explicit INTRINSIC attribute on a name of a generic interface.
Differential Revision: https://reviews.llvm.org/D123713
Shape analysis of RESHAPE(..., SHAPE=s) should of course return
the SHAPE= actual argument when it is constant; but when it is
not, its length is still known, and thus so is the rank of the
result of RESHAPE(), and shape analysis should at least return
a shape vector of the right length rather than a result that
makes the result appear to be a scalar, which can lead to some
bogus error messages.
Also, while here: rename a private GetShapeHelper::AsShape()
routine so that it can't be confused with the ones in the API
of shape.h.
Differential Revision: https://reviews.llvm.org/D123712
When a type specification appears in the prefix of a FUNCTION statement,
defer its processing as late as possible so that any symbols in the
tpe specification can be resolved in the function's scope to local
declarations, including use-associated symbols. f18 was already doing
this deferral in a limited form for derived types, and this patch
makes it work for intrinsic type parameter values as well.
In short, "real(kind(x)) function foo(x)" now works as it should.
"As late as possible" means the end of the specification part, or
the first appearance of the function result name in the specification
part.
Differential Revision: https://reviews.llvm.org/D123705
Fortran admits a few ways to have multiple symbols with the
same name in the same scope. Two of them involve generic
interfaces (from INTERFACE or GENERIC, the syntax doesn't matter);
these are allowed to inhabit a scope with either a derived type or
a subprogram that is also a specific procedure of the generic.
(But not both a derived type and a subprogram; they could not
cohabit a scope anyway, generic or not.)
In cases of USE association, f18 needs to be capable of combining
use-associated generic interfaces with other use-associated entities.
Two generics get merged (this case was nearly correct); a generic
and a derived type can merge into a GenericDetails with a shadowed
derivedType(); and a generic can replace or ignore a use-associated
procedure of the same name so long as that procedure is already
one of its specifics.
Further, these modifications to the use-associated generic
interface must be made to a local copy of the symbol. The previous
code was messing directly with the symbol in the module's scope.
The fix is basically a reimplementation of the member function
DoAddUse() in name resolution.
Differential Revision: https://reviews.llvm.org/D123704
Error messages can have a list of attachments; these are used to point
to related source locations, supply additional information, and to
encapsulate error messages that were *not* emitted in a given context
to explain why a warning was justified.
This patch adds a message severity ("Because") for that last case,
and extends to AttachTo() API to provide a means for overriding
the severity of an attached message.
Some existing message attachments had their severities adjusted,
now that we're printing them. And operator==() for Message was
cleaned up while debugging after I noticed that it was recursively
O(N**2) and subject to returning a false positive.
Differential Revision: https://reviews.llvm.org/D123710
The intrinsics DREAL, DIMAG, and DCONJG are from Fortran 77 extensions.
For DREAL, the type of argument is extended to any complex. For DIMAG
and DCONJG, the type of argument for them should be complex(8). For DIMAG,
the result type should be real(8). For DCONJG, the result type should be
complex(8). Fix the intrinsic interface for them and add test cases for
the semantic checks and the lowering.
Reviewed By: Jean Perier
Differential Revision: https://reviews.llvm.org/D123459
The float number is represented as (-1)^s * 1.f * 2^(-127) for 32-bit,
where s is the signed flag, f is the mantissa. When the exponent bits
are all zeros, the float number is represented as (-1)^s * 0.f *2^(-126)
for 32-bit, in which case, the intPart is '0'.
Reviewed By: Jean Perier
https://reviews.llvm.org/D123673
During real range reduction to [0.5, 4) with
SQRT(2**(2a) * x) = SQRT(2**(2a)) * SQRT(x) = 2**a * SQRT(x)
we fall into inf. recursion if IsZero() == true.
Explicitly handle SQRT(0.0) instead of additional checks during folding. Also
add helpers for +0.0/-0.0 generation to clean up a bit.
Reviewed By: klausler
Differential Revision: https://reviews.llvm.org/D123131