The former is redundant because the later carries it as part of
its builder. Add a getContext() helper method to DialectAsmParser
to make this more convenient, and stop passing the context around
explicitly. This simplifies ODS generated parser hooks for attrs
and types.
This resolves PR51985
Differential Revision: https://reviews.llvm.org/D110796
This patch introduces a generic reduction detection utility that works
across different dialecs. It is mostly a generalization of the reduction
detection algorithm in Affine. The reduction detection logic in Affine,
Linalg and SCFToOpenMP have been replaced with this new generic utility.
The utility takes some basic components of the potential reduction and
returns: 1) the reduced value, and 2) a list with the combiner operations.
The logic to match reductions involving multiple combiner operations disabled
until we can properly test it.
Reviewed By: ftynse, bondhugula, nicolasvasilache, pifon2a
Differential Revision: https://reviews.llvm.org/D110303
clang-cl errors out while handling the templated version of tgfmt. This
patch works around the issue by explicitly choosing the non-templated
version of tgfmt, which takes an ArrayRef<std::string>.
More details in this thread:
https://lists.llvm.org/pipermail/cfe-dev/2021-September/068936.html
Thanks @Mehdi Amini for suggesting the fix :)
Differential Revision: https://reviews.llvm.org/D110223
When both a DefaultValuedAttr and a successor or variadic region was specified, this would generate invalid C++ declaration. There would be the parameter with a default value, followed by the successors/regions, which don't have a default, which is invalid.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D110205
This revision refactors ElementsAttr into an Attribute Interface.
This enables a common interface with which to interact with
element attributes, without needing to modify the builtin
dialect. It also removes a majority (if not all?) of the need for
the current OpaqueElementsAttr, which was originally intended as
a way to opaquely represent data that was not representable by
the other builtin constructs.
The new ElementsAttr interface not only allows for users to
natively represent their data in the way that best suits them,
it also allows for efficient opaque access and iteration of the
underlying data. Attributes using the ElementsAttr interface
can directly expose support for interacting with the held
elements using any C++ data type they claim to support. For
example, DenseIntOrFpElementsAttr supports iteration using
various native C++ integer/float data types, as well as
APInt/APFloat, and more. ElementsAttr instances that refer to
DenseIntOrFpElementsAttr can use all of these data types for
iteration:
```c++
DenseIntOrFpElementsAttr intElementsAttr = ...;
ElementsAttr attr = intElementsAttr;
for (uint64_t value : attr.getValues<uint64_t>())
...;
for (APInt value : attr.getValues<APInt>())
...;
for (IntegerAttr value : attr.getValues<IntegerAttr>())
...;
```
ElementsAttr also supports failable range/iterator access,
allowing for selective code paths depending on data type
support:
```c++
ElementsAttr attr = ...;
if (auto range = attr.tryGetValues<uint64_t>()) {
for (uint64_t value : *range)
...;
}
```
Differential Revision: https://reviews.llvm.org/D109190
Currently DenseElementsAttr only exposes the ability to get the full range of values for a given type T, but there are many situations where we just want the beginning/end iterator. This revision adds proper value_begin/value_end methods for all of the supported T types, and also cleans up a bit of the interface.
Differential Revision: https://reviews.llvm.org/D104173
Some patterns may share the common DAG structures. Generate a static
function to do the match logic to reduce the binary size.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D105797
Adds a new rewrite directive returnType that can be added at the end of an op's
argument list to explicitly specify return types.
```
(OpX $v0, $v1, (returnType "$_builder.getI32Type()"))
```
Pass in a bound value to copy its return type, or pass a native code call to
dynamically create new types.
```
(OpX $v0, $v1, (returnType $v0, (NativeCodeCall<"..."> $v1)))
```
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D109472
Conversion to the LLVM dialect is being refactored to be more progressive and
is now performed as a series of independent passes converting different
dialects. These passes may produce `unrealized_conversion_cast` operations that
represent pending conversions between built-in and LLVM dialect types.
Historically, a more monolithic Standard-to-LLVM conversion pass did not need
these casts as all operations were converted in one shot. Previous refactorings
have led to the requirement of running the Standard-to-LLVM conversion pass to
clean up `unrealized_conversion_cast`s even though the IR had no standard
operations in it. The pass must have been also run the last among all to-LLVM
passes, in contradiction with the partial conversion logic. Additionally, the
way it was set up could produce invalid operations by removing casts between
LLVM and built-in types even when the consumer did not accept the uncasted
type, or could lead to cryptic conversion errors (recursive application of the
rewrite pattern on `unrealized_conversion_cast` as a means to indicate failure
to eliminate casts).
In fact, the need to eliminate A->B->A `unrealized_conversion_cast`s is not
specific to to-LLVM conversions and can be factored out into a separate type
reconciliation pass, which is achieved in this commit. While the cast operation
itself has a folder pattern, it is insufficient in most conversion passes as
the folder only applies to the second cast. Without complex legality setup in
the conversion target, the conversion infra will either consider the cast
operations valid and not fold them (a separate canonicalization would be
necessary to trigger the folding), or consider the first cast invalid upon
generation and stop with error. The pattern provided by the reconciliation pass
applies to the first cast operation instead. Furthermore, having a separate
pass makes it clear when `unrealized_conversion_cast`s could not have been
eliminated since it is the only reason why this pass can fail.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D109507
This aligns the printer with the parser contract: the operation isn't part of the user-controllable part of the syntax.
Differential Revision: https://reviews.llvm.org/D108804
* It is pretty clear that no one has tried this yet since it was both incomplete and broken.
* Fixes a symbol hiding issues keeping even the generic builder from constructing an operation with successors.
* Adds ODS support for successors.
* Adds CAPI `mlirBlockGetParentRegion`, `mlirRegionEqual` + tests (and missing test for `mlirBlockGetParentOperation`).
* Adds Python property: `Block.region`.
* Adds Python methods: `Block.create_before` and `Block.create_after`.
* Adds Python property: `InsertionPoint.block`.
* Adds new blocks.py test to verify a plausible CFG construction case.
Differential Revision: https://reviews.llvm.org/D108898
This allows for using a different type when accessing a parameter than the
one used for storage. This allows for returning parameters by reference,
enables using more optimized/convient reference results, and more.
Differential Revision: https://reviews.llvm.org/D108593
This revision adds native ODS support for VariadicOfVariadic operand
groups. An example of this is the SwitchOp, which has a variadic number
of nested operand ranges for each of the case statements, where the
number of case statements is variadic. Builtin ODS support allows for
generating proper accessors for the nested operand ranges, builder
support, and declarative format support. VariadicOfVariadic operands
are supported by providing a segment attribute to use to store the
operand groups, mapping similarly to the AttrSizedOperand trait
(but with a user defined attribute name).
`build` methods for VariadicOfVariadic operand expect inputs of the
form `ArrayRef<ValueRange>`. Accessors for the variadic ranges
return a new `OperandRangeRange` type, which represents a
contiguous range of `OperandRange`. In the declarative assembly
format, VariadicOfVariadic operands and types are by default
formatted as a comma delimited list of value lists:
`(<value>, <value>), (), (<value>)`.
Differential Revision: https://reviews.llvm.org/D107774
While the changes are extensive, they basically fall into a few
categories:
1) Moving the TestDialect itself.
2) Updating C++ code in tablegen to explicitly use ::mlir, since it
will be put in a headers that shouldn't expect a 'using'.
3) Updating some generic MLIR Interface definitions to do the same thing.
4) Updating the Tablegen generator in a few places to be explicit about
namespaces
5) Doing the same thing for llvm references, since we no longer pick
up the definitions from mlir/Support/LLVM.h
Differential Revision: https://reviews.llvm.org/D88251
Move StaticVerifierFunctionEmitter to CodeGenHelper.h so that it can be
used for both ODS and DRR.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D106636
When using an attribute where a value is expected previously this would fail
complaining about unbound symbol. Instead make error clear and mention common
failure reason.
Tested with gcc-10. Other compilers may generate additional warnings. This does not fix all warnings. There are a few extra ones in LLVMCore and MLIR.
* `OpEmitter::getAttrNameIndex`: -Wunused-function (function is private and not used anywhere)
* `PrintOpPass` copy constructor: -Wextra ("Base class should be explicitly initialized in the copy constructor")
* `LegalizeForLLVMExport.cpp`: -Woverflow (overflow is expected, silence warning by making the cast explicit)
Differential Revision: https://reviews.llvm.org/D107525
This allows to use OperationEquivalence to track structural comparison for equality
between two operations.
Differential Revision: https://reviews.llvm.org/D106422
By making an explicit template specialization for the TypeID provided by these classes,
the compiler will not emit an inline weak definition and rely on the linker to unique it.
Instead a single definition will be emitted in the C++ file alongside the implementation
for these classes. That will turn into a linker error what is now a hard-to-debug runtime
behavior where instances of the same class may be using a different TypeID inside of
different DSOs.
Recommit 660a56956c after fixing gcc5
build.
Differential Revision: https://reviews.llvm.org/D105903
Historically the builtin dialect has had an empty namespace. This has unfortunately created a very awkward situation, where many utilities either have to special case the empty namespace, or just don't work at all right now. This revision adds a namespace to the builtin dialect, and starts to cleanup some of the utilities to no longer handle empty namespaces. For now, the assembly form of builtin operations does not require the `builtin.` prefix. (This should likely be re-evaluated though)
Differential Revision: https://reviews.llvm.org/D105149
By making an explicit template specialization for the TypeID provided by these classes,
the compiler will not emit an inline weak definition and rely on the linker to unique it.
Instead a single definition will be emitted in the C++ file alongside the implementation
for these classes. That will turn into a linker error what is now a hard-to-debug runtime
behavior where instances of the same class may be using a different TypeID inside of
different DSOs.
Differential Revision: https://reviews.llvm.org/D105903
By making an explicit template specialization for the TypeID provided by these classes,
the compiler will not emit an inline weak definition and rely on the linker to unique it.
Instead a single definition will be emitted in the C++ file alongside the implementation
for these classes. That will turn into a linker error what is now a hard-to-debug runtime
behavior where instances of the same class may be using a different TypeID inside of
different DSOs.
Differential Revision: https://reviews.llvm.org/D105903
We are able to bind NativeCodeCall result as binding operation. To make
table-gen have better understanding in the form of helper function,
we need to specify the number of return values in the NativeCodeCall
template. A VoidNativeCodeCall is added for void case.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D102160
For example, we will generate incorrect code for the pattern,
def : Pat<((FooOp (FooOp, $a, $b), $b)), (...)>;
We didn't allow $b to be bond twice with same operand of same op.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D105677
In cases where an operation has an argument or result named 'property', the
ODS-generated python fails on import because the `@property` resolves to the
`property` operation argument instead of the builtin `@property` decorator. We
should always use the fully qualified decorator name.
Reviewed By: mikeurbach
Differential Revision: https://reviews.llvm.org/D106106
After the MemRef has been split out of the Standard dialect, the
conversion to the LLVM dialect remained as a huge monolithic pass.
This is undesirable for the same complexity management reasons as having
a huge Standard dialect itself, and is even more confusing given the
existence of a separate dialect. Extract the conversion of the MemRef
dialect operations to LLVM into a separate library and a separate
conversion pass.
Reviewed By: herhut, silvas
Differential Revision: https://reviews.llvm.org/D105625
"Standard-to-LLVM" conversion is one of the oldest passes in existence. It has
become quite large due to the size of the Standard dialect itself, which is
being split into multiple smaller dialects. Furthermore, several conversion
features are useful for any dialect that is being converted to the LLVM
dialect, which, without this refactoring, creates a dependency from those
conversions to the "standard-to-llvm" one.
Put several of the reusable utilities from this conversion to a separate
library, namely:
- type converter from builtin to LLVM dialect types;
- utility for building and accessing values of LLVM structure type;
- utility for building and accessing values that represent memref in the LLVM
dialect;
- lowering options applicable everywhere.
Additionally, remove the type wrapping/unwrapping notion from the type
converter that is no longer relevant since LLVM types has been reimplemented as
first-class MLIR types.
Reviewed By: pifon2a
Differential Revision: https://reviews.llvm.org/D105534
Split out GPU ops library from GPU transforms. This allows libraries to
depend on GPU Ops without needing/building its transforms.
Differential Revision: https://reviews.llvm.org/D105472
Unbreaks building mlir-reduce when `DLLVM_INCLUDE_TESTS` is set to OFF.
The dependency MLIRTestDialect is only available if building with tests.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D105434
Different constraints may share the same predicate, in this case, we
will generate duplicate ODS verification function.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D104369
* Previously, we were only generating .h.inc files. We foresee the need to also generate implementations and this is a step towards that.
* Discussed in https://llvm.discourse.group/t/generating-cpp-inc-files-for-dialects/3732/2
* Deviates from the discussion above by generating a default constructor in the .cpp.inc file (and adding a tablegen bit that disables this in case if this is user provided).
* Generating the destructor started as a way to flush out the missing includes (produces a link error), but it is a strict improvement on its own that is worth doing (i.e. by emitting key methods in the .cpp file, we root vtables in one translation unit, which is a non-controversial improvement).
Differential Revision: https://reviews.llvm.org/D105070
Operations currently rely on the string name of attributes during attribute lookup/removal/replacement, in build methods, and more. This unfortunately means that some of the most used APIs in MLIR require string comparisons, additional hashing(+mutex locking) to construct Identifiers, and more. This revision remedies this by caching identifiers for all of the attributes of the operation in its corresponding AbstractOperation. Just updating the autogenerated usages brings up to a 15% reduction in compile time, greatly reducing the cost of interacting with the attributes of an operation. This number can grow even higher as we use these methods in handwritten C++ code.
Methods for accessing these cached identifiers are exposed via `<attr-name>AttrName` methods on the derived operation class. Moving forward, users should generally use these methods over raw strings when an attribute name is necessary.
Differential Revision: https://reviews.llvm.org/D104167
Redirect the copy ctor to the actual class instead of
overwriting it with `TypeID` based ctor.
This allows the final Pass classes to have extra fields and logic for their copy.
Reviewed By: lattner
Differential Revision: https://reviews.llvm.org/D104302
This revision adds support for passing a functor to SourceMgrDiagnosticHandler for filtering out FileLineColLocs when emitting a diagnostic. More specifically, this can be useful in situations where there may be large CallSiteLocs with locations that aren't necessarily important/useful for users.
For now the filtering support is limited to FileLineColLocs, but conceptually we could allow filtering for all locations types if a need arises in the future.
Differential Revision: https://reviews.llvm.org/D103649
ODS currently emits the interface trait class as a nested class inside the
interface class. As an unintended consequence, the default implementations of
interface methods have implicit access to static fields of the interface class,
e.g. those declared in `extraClassDeclaration`, including private methods (!),
or in the parent class. This may break the use of default implementations for
external models, which are not defined in the interface class, and generally
complexifies the abstraction.
Emit intraface traits outside of the interface class itself to avoid accidental
implicit visibility. Public static fields can still be accessed via explicit
qualification with a class name, e.g., `MyOpInterface::staticMethod()` instead
of `staticMethod`.
Update the documentation to clarify the role of `extraClassDeclaration` in
interfaces.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D104384
This patch changes the (not recommended) static registration API from:
static PassRegistration<MyPass> reg("my-pass", "My Pass Description.");
to:
static PassRegistration<MyPass> reg;
And the explicit registration from:
void registerPass("my-pass", "My Pass Description.",
[] { return createMyPass(); });
To:
void registerPass([] { return createMyPass(); });
It is expected that Pass implementations overrides the getArgument() method
instead. This will ensure that pipeline description can be printed and parsed
back.
Differential Revision: https://reviews.llvm.org/D104421
Default implementations of interfaces may rely on extra class
declarations, which aren't currently generated in the external model,
that in turn may rely on functions defined in the main Attribute/Type
class, which wouldn't be available on the external model.
It may be desirable to provide an interface implementation for an attribute or
a type without modifying the definition of said attribute or type. Notably,
this allows to implement interfaces for attributes and types outside of the
dialect that defines them and, in particular, provide interfaces for built-in
types. Provide the mechanism to do so.
Currently, separable registration requires the attribute or type to have been
registered with the context, i.e. for the dialect containing the attribute or
type to be loaded. This can be relaxed in the future using a mechanism similar
to delayed dialect interface registration.
See https://llvm.discourse.group/t/rfc-separable-attribute-type-interfaces/3637
Depends On D104233
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D104234
This is useful for "build tuple" type ops. In my case, in npcomp, I have
an op:
```
// Result type is `!torch.tuple<!torch.tensor, !torch.tensor>`.
torch.prim.TupleConstruct %0, %1 : !torch.tensor, !torch.tensor
```
and the context is required for the `Torch::TupleType::get` call (for
the case of an empty tuple).
The handling of these FmtContext's in the code is pretty ad-hoc -- I didn't
attempt to rationalize it and just made a targeted fix. As someone
unfamiliar with the code I had a hard time seeing how to more broadly fix
the situation.
Differential Revision: https://reviews.llvm.org/D104274
Interface patterns are unique in that they get added to every operation that also implements that interface, given that they aren't tied to individual operations. When the same interface pattern gets added to multiple operations (such as the current behavior with Linalg), an reference to each of these patterns is added to every op (meaning that an operation will now have N references to effectively the same pattern). This revision fixes this problematic behavior in Linalg, and can bring upwards of a 25% reduction in compile time in Linalg based workloads.
Differential Revision: https://reviews.llvm.org/D104160
Move the core reducer algorithm into a library so that it'll be easier
for porting to different projects.
Depends On D101046
Reviewed By: jpienaar, rriddle
Differential Revision: https://reviews.llvm.org/D101607
* A Reducer is a kind of RewritePattern, so it's just the same as
writing graph rewrite.
* ReductionTreePass operates on Operation rather than ModuleOp, so that
* we are able to reduce a nested structure(e.g., module in module) by
* self-nesting.
Reviewed By: jpienaar, rriddle
Differential Revision: https://reviews.llvm.org/D101046
* Add `hasCanonicalizer` option to Dialect.
* Initialize canonicalizer with dialect-wide canonicalization patterns.
* Add test case to TestDialect.
Dialect-wide canonicalization patterns are useful if a canonicalization pattern does not conceptually associate with any single operation, i.e., it should not be registered as part of an operation's `getCanonicalizationPatterns` function. E.g., this is the case for canonicalization patterns that match an op interface.
Differential Revision: https://reviews.llvm.org/D103226
I noticed while packaging mlir that most mlir library names start
with `libMLIR`. The only different libary was `libMlirLspServerLib.a`.
That's why I changed the library to be similarly named to the others.
Differential Revision: https://reviews.llvm.org/D102881
The patch extends the yaml code generation to support the following new OpDSL constructs:
- captures
- constants
- iteration index accesses
- predefined types
These changes have been introduced by revision
https://reviews.llvm.org/D101364.
Differential Revision: https://reviews.llvm.org/D102075
At present, a lot of code contains main function bodies like "return failed(mlir::MlirOptMain(...);". This is unfortunate for two reasons: a) it uses ADL, which is maybe not what the free "failed" function was designed for; and b) it is a bit awkward to read, requring the reader to both understand the boolean nature of the value and the semantics of main's return value. (And it's also not portable, since 1 is not a portable success value.)
The replacement code, `return mlir::AsMainReturnCode(mlir::MlirOptMain(...))` is a bit more self-explanatory.
The change applies the new function to a few internal uses of MlirOptMain, too.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D102641
test/lib/Transforms/ has bitrot and become somewhat of a dumping grounds for testing pretty much any part of the project. This revision cleans this up, and moves the files within to a directory that reflects what is actually being tested.
Differential Revision: https://reviews.llvm.org/D102456
We are able to bind the result from native function while rewriting
pattern. In matching pattern, if we want to get some values back, we can
do that by passing parameter as return value placeholder. Besides, add
the semantic of '$_self' in NativeCodeCall while matching, it'll be the
operation that defines certain operand.
Differential Revision: https://reviews.llvm.org/D100746
This revision migrates more code from Linalg into the new permanent home of
SparseTensor. It replaces the test passes with proper compiler passes.
NOTE: the actual removal of the last glue and clutter in Linalg will follow
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D101811
This commits adds a basic LSP server for MLIR that supports resolving references and definitions. Several components of the setup are simplified to keep the size of this commit down, and will be built out in later commits. A followup commit will add a vscode language client that communicates with this server, paving the way for better IDE experience when interfacing with MLIR files.
The structure of this tool is similar to mlir-opt and mlir-translate, i.e. the implementation is structured as a library that users can call into to implement entry points that contain the dialects/passes that they are interested in.
Note: This commit contains several files, namely those in `mlir-lsp-server/lsp`, that have been copied from the LSP code in clangd and adapted for use in MLIR. This copying was decided as the best initial path forward (discussed offline by several stake holders in MLIR and clangd) given the different needs of our MLIR server, and the one for clangd. If a strong desire/need for unification arises in the future, the existence of these files in mlir-lsp-server can be reconsidered.
Differential Revision: https://reviews.llvm.org/D100439
This matches the current support provided to operations, and allows attaching traits, interfaces, and using the DeclareInterfaceMethods utility. This was missed when attribute/type generation was first added.
Differential Revision: https://reviews.llvm.org/D100233
This is useful for expressing specific table-gen options, like selecting
a particular dialect to print.
Use it to fix the documentation for the `pdl_interp` dialect which is now
generating the first dialect it finds in its input which is `pdl`.
Differential Revision: https://reviews.llvm.org/D100517
We are able to config the reducer pass pipeline through command-line.
Reviewed By: jpienaar, rriddle
Differential Revision: https://reviews.llvm.org/D100155
Add iterator for ReductionNode traversal and use range to indicate the
region we would like to keep. Refactor the interaction between
Pass/Tester/ReductionNode.
Now it'll be easier to add new traversal type and OpReducer
Reviewed By: jpienaar, rriddle
Differential Revision: https://reviews.llvm.org/D99713
This reverts commit a32846b1d0.
The build is broken with -DBUILD_SHARED_LIBS=ON:
tools/mlir/lib/Reducer/CMakeFiles/obj.MLIRReduce.dir/Tester.cpp.o: In function `mlir::Tester::isInteresting(mlir::ModuleOp) const':
Tester.cpp:(.text._ZNK4mlir6Tester13isInterestingENS_8ModuleOpE+0xa8): undefined reference to `mlir::OpPrintingFlags::OpPrintingFlags()'
Tester.cpp:(.text._ZNK4mlir6Tester13isInterestingENS_8ModuleOpE+0xc6): undefined reference to `mlir::Operation::print(llvm::raw_ostream&, mlir::OpPrintingFlags)'
Add iterator for ReductionNode traversal and use range to indicate the region we would like to keep. Refactor the interaction between Pass/Tester/ReductionNode.
Now it'll be easier to add new traversal type and OpReducer
Reviewed By: jpienaar, rriddle
Differential Revision: https://reviews.llvm.org/D99713
These patterns have been used as a prerequisite step for lowering
to SPIR-V. But they don't involve SPIR-V dialect ops; they are
pure memref/vector op transformations. Given now we have a dedicated
MemRef dialect, moving them to Memref/Transforms/, which is a more
suitable place to host them, to allow used by others.
This commit just moves code around and renames patterns/passes
accordingly. CMakeLists.txt for existing MemRef libraries are
also improved along the way.
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D100326
Enables performing the same filtering in the op doc definition as in the op definition generator.
Differential Revision: https://reviews.llvm.org/D99793
Right now Elementwise operations fusion in Linalg fuses everything it
can. This can run up against resource limits of the target hardware
without some checks. This patch adds a callback function that clients
can use to implement a cost function. When two elementwise operations
are deemed structurally fusable, the callback can be used to control
if the fusion applies.
Differential Revision: https://reviews.llvm.org/D99820
The issue was introduced in D98468.
The `{0}Regions` is an array of `std::unique_ptr<Region>` objects,
so it should be processed accordingly.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D99332