This patch is a joint work by Rui Ueyama and me based on D58102 by Xiang Zhang.
It adds Intel CET (Control-flow Enforcement Technology) support to lld.
The implementation follows the draft version of psABI which you can
download from https://github.com/hjl-tools/x86-psABI/wiki/X86-psABI.
CET introduces a new restriction on indirect jump instructions so that
you can limit the places to which you can jump to using indirect jumps.
In order to use the feature, you need to compile source files with
-fcf-protection=full.
* IBT is enabled if all input files are compiled with the flag. To force enabling ibt, pass -z force-ibt.
* SHSTK is enabled if all input files are compiled with the flag, or if -z shstk is specified.
IBT-enabled executables/shared objects have two PLT sections, ".plt" and
".plt.sec". For the details as to why we have two sections, please read
the comments.
Reviewed By: xiangzhangllvm
Differential Revision: https://reviews.llvm.org/D59780
When compiling position-independent executables, we now use
DW_EH_PE_pcrel | DW_EH_PE_sdata4. However, the MIPS ABI does not define a
64-bit PC-relative ELF relocation so we cannot use sdata8 for the large
code model case. When using the large code model, we fall back to the
previous behaviour of generating absolute relocations.
With this change clang-generated .o files can be linked by LLD without
having to pass -Wl,-z,notext (which creates text relocations).
This is simpler than the approach used by ld.bfd, which rewrites the
.eh_frame section to convert absolute relocations into relative references.
I saw in D13104 that apparently ld.bfd did not accept pc-relative relocations
for MIPS ouput at some point. However, I also checked that recent ld.bfd
can process the clang-generated .o files so this no longer seems true.
Reviewed By: atanasyan
Differential Revision: https://reviews.llvm.org/D72228
For a target symbol defined in the same section, currently we don't emit
a relocation if VariantKind is VK_None (with few exceptions like RISC-V
relaxation), while GNU as emits one. This causes program behavior
differences with and without -ffunction-sections, and can break intended
symbol interposition in a -shared link.
```
.globl foo
foo:
call foo # no relocation. On other targets, may be written as b foo, etc
call bar # a relocation if bar is in another section (e.g. -ffunction-sections)
call foo@plt # a relocation
```
Unify these cases by always emitting a relocation. If we ever want to
optimize `call foo` in -shared links, we should emit a STB_LOCAL alias
and call via the alias.
ARM/thumb2-beq-fixup.s: we now emit a relocation to global_thumb_fn as GNU as does.
X86/Inputs/align-branch-64-2.s: we now emit R_X86_64_PLT32 to foo as GNU does.
ELF/relax.s: rewrite the test as target-in-same-section.s .
We omitted relocations to `global` and now emit R_X86_64_PLT32.
Note, GNU as does not emit a relocation for `jmp global` (maybe its own
bug). Our new behavior is compatible except `jmp global`.
Reviewed By: peter.smith
Differential Revision: https://reviews.llvm.org/D72197
RangeExtensionThunkARM64 is created for out-of-range branches on Windows ARM64
because branch instructions has limited bits to encode target address.
Currently, RangeExtensionThunkARM64 is appended to its referencing COFF section
from object file at link time without any alignment requirement, so if size of
the preceding COFF section is not aligned to instruction boundary (4 bytes),
RangeExtensionThunkARM64 will emit thunk instructions at unaligned address
which is never a valid branch target on ARM64, and usually triggers invalid
instruction exception when branching to it.
This PR fixes it by requiring such thunks to align at 4 bytes.
Differential revision: https://reviews.llvm.org/D72473
RELA targets don't read initial .got.plt entries.
REL targets (ARM, x86-32) write the address of the IFUNC resolver to the
entry (`write32le(buf, s.getVA())`).
The default writeIgotPlt() is not meaningful. Make it a no-op. AArch64
and x86-64 will have 0 as initial .got.plt entries associated with
IFUNC.
Reviewed By: peter.smith
Differential Revision: https://reviews.llvm.org/D72474
Unlike most of our errors in the debug line parser, the "no end of
sequence" message was missing any reference to which line table it
refererred to. This change adds the offset to this message.
Reviewed by: dblaikie
Differential Revision: https://reviews.llvm.org/D72443
Changed ThreadPoolExecutor to no longer use detached threads and instead
to join threads on destruction. This is to prevent intermittent crashing
on Windows when doing a normal full exit, e.g. via exit().
Changed ThreadPoolExecutor to be a ManagedStatic so that it can be
stopped on llvm_shutdown(). Without this, it would only be stopped in
the destructor when doing a full exit. This is required to avoid
intermittent crashing on Windows due to a race condition between the
ThreadPoolExecutor starting up threads and the process doing a fast
exit, e.g. via _exit().
The Windows crashes appear to only occur with the MSVC static runtimes
and are more frequent with the debug static runtime.
These changes also prevent intermittent deadlocks on exit with the MinGW
runtime.
Differential Revision: https://reviews.llvm.org/D70447
down to pass builder in ltobackend.
Currently CodeGenOpts like UnrollLoops/VectorizeLoop/VectorizeSLP in clang
are not passed down to pass builder in ltobackend when new pass manager is
used. This is inconsistent with the behavior when new pass manager is used
and thinlto is not used. Such inconsistency causes slp vectorization pass
not being enabled in ltobackend for O3 + thinlto right now. This patch
fixes that.
Differential Revision: https://reviews.llvm.org/D72386
An undefined weak does not fetch the lazy definition. A lazy weak symbol
should be considered undefined, and thus preemptible if .dynsym exists.
D71795 is not quite an NFC. It errors on an R_X86_64_PLT32 referencing
an undefined weak symbol. isPreemptible is false (incorrect) => R_PLT_PC
is optimized to R_PC => in isStaticLinkTimeConstant, an error is emitted
when an R_PC is applied on an undefined weak (considered absolute).
Weak undefined symbols are preemptible after D71794.
if (sym.isPreemptible)
return false;
if (!config->isPic)
return true;
// isPic means includeInDynsym is true after D71794.
...
// We can delete this if because it can never be true.
if (sym.isUndefWeak)
return true;
Differential Revision: https://reviews.llvm.org/D71795
D59275 added the following clause to Symbol::includeInDynsym()
if (isUndefWeak() && Config->Pie && SharedFiles.empty())
return false;
D59549 explored the possibility to generalize it for -no-pie.
GNU ld's rules are architecture dependent and partly controlled by -z
{,no-}dynamic-undefined-weak. Our attempts to mimic its rules are
actually half-baked and don't provide perceivable benefits (it can save
a few more weak undefined symbols in .dynsym in a -static-pie
executable). Let's just delete the rule for simplicity. We will expect
cosmetic inconsistencies with ld.bfd in certain -static-pie scenarios.
This permits a simplification in D71795.
Reviewed By: peter.smith
Differential Revision: https://reviews.llvm.org/D71794
In AArch64 a branch to an undefined weak symbol that does not have a PLT
entry should resolve to the next instruction. The thunk generation code
can prevent this from happening as a range extension thunk can be generated
if the branch is sufficiently far away from 0, the value of an undefined
weak symbol.
The fix is taken from the Arm implementation of needsThunk(), we prevent a
thunk from being generated to an undefined weak symbol.
fixes pr44451
Differential Revision: https://reviews.llvm.org/D72267
```
lld/ELF/Relocations.cpp:1622:56: warning: loop variable 'ts' of type 'const std::pair<ThunkSection *, uint32_t>' (aka 'const pair<lld:🧝:ThunkSection *, unsigned int>') creates a copy from type 'const std::pair<ThunkSection *, uint32_t>' [-Wrange-loop-analysis]
for (const std::pair<ThunkSection *, uint32_t> ts : isd->thunkSections)
```
Drop const qualifier to fix -Wrange-loop-analysis.
We can make -Wrange-loop-analysis warnings (DiagnoseForRangeConstVariableCopies) on `const A` more
permissive on more types (e.g. POD -> trivially copyable), unfortunately it will not make std::pair
good, because `constexpr pair& operator=(const pair& p);` is unfortunately user-defined.
Reviewed By: Mordante
Differential Revision: https://reviews.llvm.org/D72211
Both MS link.exe and GNU ld.bfd handle it this way; one can have
multiple object files defining the same absolute symbols, as long
as it defines it to the same value. But if there are multiple absolute
symbols with differing values, it is treated as an error.
Differential Revision: https://reviews.llvm.org/D71981
Summary:
I used this information to motivate splitting up the Intrinsic::ID enum
(5d986953c8) and adding a key method to
clang::Sema (586f65d31f) which saved a
fair amount of object file size.
Example output for clang.pdb:
Top 10 types responsible for the most TPI input bytes:
index total bytes count size
0x3890: 8,671,220 = 1,805 * 4,804
0xE13BE: 5,634,720 = 252 * 22,360
0x6874C: 5,181,600 = 408 * 12,700
0x2A1F: 4,520,528 = 1,574 * 2,872
0x64BFF: 4,024,020 = 469 * 8,580
0x1123: 4,012,020 = 2,157 * 1,860
0x6952: 3,753,792 = 912 * 4,116
0xC16F: 3,630,888 = 633 * 5,736
0x69DD: 3,601,160 = 985 * 3,656
0x678D: 3,577,904 = 319 * 11,216
In this case, we can see that record 0x3890 is responsible for ~8MB of
total object file size for objects in clang.
The user can then use llvm-pdbutil to find out what the record is:
$ llvm-pdbutil dump -types -type-index 0x3890
Types (TPI Stream)
============================================================
Showing 1 records.
0x3890 | LF_FIELDLIST [size = 4804]
- LF_STMEMBER [name = `WORDTYPE_MAX`, type = 0x1001, attrs = public]
- LF_MEMBER [name = `U`, Type = 0x37F0, offset = 0, attrs = private]
- LF_MEMBER [name = `BitWidth`, Type = 0x0075 (unsigned), offset = 8, attrs = private]
- LF_METHOD [name = `APInt`, # overloads = 8, overload list = 0x3805]
...
In this case, we can see that these are members of the APInt class,
which is emitted in 1805 object files.
The next largest type is ASTContext:
$ llvm-pdbutil dump -types -type-index 0xE13BE bin/clang.pdb
0xE13BE | LF_FIELDLIST [size = 22360]
- LF_BCLASS
type = 0x653EA, offset = 0, attrs = public
- LF_MEMBER [name = `Types`, Type = 0x653EB, offset = 8, attrs = private]
- LF_MEMBER [name = `ExtQualNodes`, Type = 0x653EC, offset = 24, attrs = private]
- LF_MEMBER [name = `ComplexTypes`, Type = 0x653ED, offset = 48, attrs = private]
- LF_MEMBER [name = `PointerTypes`, Type = 0x653EE, offset = 72, attrs = private]
...
ASTContext only appears 252 times, but the list of members is long, and
must be repeated everywhere it is used.
This was the output before I split Intrinsic::ID:
Top 10 types responsible for the most TPI input:
0x686C: 69,823,920 = 1,070 * 65,256
0x686D: 69,819,640 = 1,070 * 65,252
0x686E: 69,819,640 = 1,070 * 65,252
0x686B: 16,371,000 = 1,070 * 15,300
...
These records were all lists of intrinsic enums.
Reviewers: MaskRay, ruiu
Subscribers: mgrang, zturner, thakis, hans, akhuang, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71437
Rather than handling zlib handling manually, use `find_package` from CMake
to find zlib properly. Use this to normalize the `LLVM_ENABLE_ZLIB`,
`HAVE_ZLIB`, `HAVE_ZLIB_H`. Furthermore, require zlib if `LLVM_ENABLE_ZLIB` is
set to `YES`, which requires the distributor to explicitly select whether
zlib is enabled or not. This simplifies the CMake handling and usage in
the rest of the tooling.
This restores 68a235d07f,
e6c7ed6d21. The problem with the windows
bot is a need for clearing the cache.
LLD warns if it encounters malformed debug data when parsing line
information for an undefined reference. We only want to warn once.
This patch adds additional checking to make sure the warnings are
printed only once, both for variables within the same program and
variables in later line programs.
Reviewed by: grimar, MaskRay
Differential Revision: https://reviews.llvm.org/D71759
This reverts commit 68a235d07f.
This commit broke the clang-x64-windows-msvc build bot and a follow-up
commit did not fix it. Reverting to fix the bot.
Rather than handling zlib handling manually, use `find_package` from CMake
to find zlib properly. Use this to normalize the `LLVM_ENABLE_ZLIB`,
`HAVE_ZLIB`, `HAVE_ZLIB_H`. Furthermore, require zlib if `LLVM_ENABLE_ZLIB` is
set to `YES`, which requires the distributor to explicitly select whether
zlib is enabled or not. This simplifies the CMake handling and usage in
the rest of the tooling.
One instance looks like a false positive:
lld/ELF/Relocations.cpp:1622:14: note: use reference type 'const std::pair<ThunkSection *, uint32_t> &' (aka 'cons
t pair<lld:🧝:ThunkSection *, unsigned int> &') to prevent copying
for (const std::pair<ThunkSection *, uint32_t> ts : isd->thunkSections)
It is not changed in this commit.
GCC before r245813 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=79439)
did not emit nop after b/bl. This can happen with recursive calls.
r245813 was back ported to GCC 5.5 and GCC 6.4.
This is common, for example, libstdc++.a(locale.o) shipped with GCC 4.9
and many objects in netlib lapack can cause lld to error. gold allows
such calls to the same section. Our __plt_foo symbol's `section` field
is used for ThunkSection, so we can't implement a similar loosen rule
easily. But we can make use of its `file` field which is currently NULL.
Differential Revision: https://reviews.llvm.org/D71639
Similar to D71509 (EM_PPC64), on EM_PPC, the IPLT code sequence should
be similar to a PLT call stub. Unlike EM_PPC64, EM_PPC -msecure-plt has
small/large PIC model differences.
* -fpic/-fpie: R_PPC_PLTREL24 r_addend=0. The call stub loads an address relative to `_GLOBAL_OFFSET_TABLE_`.
* -fPIC/-fPIE: R_PPC_PLTREL24 r_addend=0x8000. (A partial linked object
file may have an addend larger than 0x8000.) The call stub loads an address relative to .got2+0x8000.
Just assume large PIC model for now. This patch makes:
// clang -fuse-ld=lld -msecure-plt -fno-pie -no-pie a.c
// clang -fuse-ld=lld -msecure-plt -fPIE -pie a.c
#include <stdio.h>
static void impl(void) { puts("meow"); }
void thefunc(void) __attribute__((ifunc("resolver")));
void *resolver(void) { return &impl; }
int main(void) {
thefunc();
void (*theptr)(void) = &thefunc;
theptr();
}
work on Linux glibc. -fpie will crash because the compiler and the
linker do not agree on the value which r30 stores (_GLOBAL_OFFSET_TABLE_
vs .got2+0x8000).
Differential Revision: https://reviews.llvm.org/D71621
Non-preemptible IFUNC are placed in in.iplt (.glink on EM_PPC64). If
there is a non-GOT non-PLT relocation, for pointer equality, we change
the type of the symbol from STT_IFUNC and STT_FUNC and bind it to the
.glink entry.
On EM_386, EM_X86_64, EM_ARM, and EM_AARCH64, the PLT code sequence
loads the address from its associated .got.plt slot. An IPLT also has an
associated .got.plt slot and can use the same code sequence.
On EM_PPC64, the PLT code sequence is actually a bl instruction in
.glink . It jumps to `__glink_PLTresolve` (the PLT header). and
`__glink_PLTresolve` computes the .plt slot (relocated by
R_PPC64_JUMP_SLOT).
An IPLT does not have an associated R_PPC64_JUMP_SLOT, so we cannot use
`bl` in .iplt . Instead, create a call stub which has a similar code
sequence as PPC64PltCallStub. We don't save the TOC pointer, so such
scenarios will not work: a function pointer to a non-preemptible ifunc,
which resolves to a function defined in another DSO. This is the
restriction described by https://sourceware.org/glibc/wiki/GNU_IFUNC
(though on many architectures it works in practice):
Requirement (a): Resolver must be defined in the same translation unit as the implementations.
If an ifunc is taken address but not called, technically we don't need
an entry for it, but we currently do that.
This patch makes
// clang -fuse-ld=lld -fno-pie -no-pie a.c
// clang -fuse-ld=lld -fPIE -pie a.c
#include <stdio.h>
static void impl(void) { puts("meow"); }
void thefunc(void) __attribute__((ifunc("resolver")));
void *resolver(void) { return &impl; }
int main(void) {
thefunc();
void (*theptr)(void) = &thefunc;
theptr();
}
work on Linux glibc and FreeBSD. Calling a function pointer pointing to
a Non-preemptible IFUNC never worked before.
Differential Revision: https://reviews.llvm.org/D71509
This restores commit 1417558e4a and its follow-up, reverted by commit c3dbd782f1.
After this commit:
clang -fuse-ld=bfd -no-pie -nostdlib a.c => .interp not created
clang -fuse-ld=bfd -pie -fPIE -nostdlib a.c => .interp created
clang -fuse-ld=gold -no-pie -nostdlib a.c => .interp not created
clang -fuse-ld=gold -pie -fPIE -nostdlib a.c => .interp created
clang -fuse-ld=lld -no-pie -nostdlib a.c => .interp created
clang -fuse-ld=lld -pie -fPIE -nostdlib a.c => .interp created
This reverts commit 1417558e4a.
Also reverts commit 019a92bb28.
This causes check-sanitizer to fail. The "-Nolib" variant of the test
crashes on startup in the loader.
Similar to rL362355, but with the `!config->shared` guard.
(1) {gcc,clang} -fuse-ld=bfd -pie -fPIE -nostdlib a.c => .interp created
(2) {gcc,clang} -fuse-ld=lld -pie -fPIE -nostdlib a.c => .interp not created
(3) {gcc,clang} -fuse-ld=lld -pie -fPIE -nostdlib a.c a.so => .interp created
The inconsistency of (2) is due to the condition `!Config->SharedFiles.empty()`.
To make lld behave more like ld.bfd, we could change the condition to:
config->hasDynSymTab && !config->dynamicLinker.empty() && script->needsInterpSection();
However, that would bring another inconsistency as can be observed with:
(4) {gcc,clang} -fuse-ld=bfd -no-pie -nostdlib a.c => .interp not created
Linux powerpc discards `*(.gnu.version*)` (arch/powerpc/kernel/vmlinux.lds.S)
to suppress --orphan-handling=warn warnings in the -pie output `.tmp_vmlinux1`
The support is simple. Just add isLive() to:
1) Fix an assertion in SectionBase::getPartition() called by VersionTableSection::isNeeded().
2) Suppress DT_VERSYM, DT_VERDEF, DT_VERNEED and DT_VERNEEDNUM, if the relevant section is discarded.
Reviewed By: grimar
Differential Revision: https://reviews.llvm.org/D71819
For undef-not-suggest.test, we currently make redundant alternative
spelling suggestions:
```
ld.lld: error: relocation refers to a discarded section: .text.foo
>>> defined in a.o
>>> section group signature: foo
>>> prevailing definition is in a.o
>>> referenced by a.o:(.rodata+0x0)
>>> did you mean:
>>> defined in: a.o
ld.lld: error: relocation refers to a symbol in a discarded section: foo
>>> defined in a.o
>>> section group signature: foo
>>> prevailing definition is in a.o
>>> referenced by a.o:(.rodata+0x8)
>>> did you mean: for
>>> defined in: a.o
```
Reviewed By: grimar, ruiu
Differential Revision: https://reviews.llvm.org/D71735
Summary:
If none of the input files are ELF object files (for example, when
generating an object file from a single binary input file via
"-b binary"), use a fallback value for the ELF header flags instead
of crashing with an assertion failure.
Reviewers: MaskRay, ruiu, espindola
Reviewed By: MaskRay, ruiu
Subscribers: kevans, grimar, emaste, arichardson, asb, rbar, johnrusso, simoncook, sabuasal, niosHD, kito-cheng, shiva0217, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, rkruppe, PkmX, jocewei, psnobl, benna, Jim, lenary, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, llvm-commits, jrtc27
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71101