Ensure that there is at most one phi write access per PHINode and
ScopStmt. In particular, this would be possible for non-affine
subregions with multiple exiting blocks. We replace multiple MAY_WRITE
accesses by one MUST_WRITE access. The written value is constructed
using a PHINode of all exiting blocks. The interpretation of the PHI
WRITE's "accessed value" changed from the incoming value to the PHI like
for PHI READs since there is no unique incoming value.
Because region simplification shuffles around PHI nodes -- particularly
with exit node PHIs -- the PHINodes at analysis time does not always
exist anymore in the code generation pass. We instead remember the
incoming block/value pair in the MemoryAccess.
Differential Revision: http://reviews.llvm.org/D15681
llvm-svn: 258809
Ensure there is at most one write access per definition of an
llvm::Value. Keep track of already created value write access by using
a (dense) map.
Replace addValueWriteAccess by ensureValueStore which can be uses more
liberally without worrying to add redundant accesses. It will be used,
e.g. in a logical correspondant for value reads -- ensureValueReload --
to ensure that the expected definition has been written when loading it.
Differential Revision: http://reviews.llvm.org/D15483
llvm-svn: 258807
Both functions implement the same functionality, with the difference that
getNewScalarValue assumes that globals and out-of-scop scalars can be directly
reused without loading them from their corresponding stack slot. This is correct
for sequential code generation, but causes issues with outlining code e.g. for
OpenMP code generation. getNewValue handles such cases correctly.
Hence, we can replace getNewScalarValue with getNewValue. This is not only more
future proof, but also eliminates a bunch of code.
The only functionality that was available in getNewScalarValue that is lost
is the on-demand creation of scalar values. However, this is not necessary any
more as scalars are always loaded at the beginning of each basic block and will
consequently always be available when scalar stores are generated. As this was
not the case in older versions of Polly, it seems the on-demand loading is just
some older code that has not yet been removed.
Finally, generateScalarLoads also generated loads for values that are loop
invariant, available in GlobalMap and which are preferred over the ones loaded
in generateScalarLoads. Hence, we can just skip the code generation of such
scalar values, avoiding the generation of dead code.
Differential Revision: http://reviews.llvm.org/D16522
llvm-svn: 258799
Polly currently does not support irreducible control and it is probably not
worth supporting. This patch adds code that checks for irreducible control
and refuses regions containing irreducible control.
Polly traditionally had rather restrictive checks on the control flow structure
which would have refused irregular control, but within the last couple of months
most of the control flow restrictions have been removed. As part of this
generalization we accidentally allowed irregular control flow.
Contributed-by: Karthik Senthil and Ajith Pandel
llvm-svn: 258497
The test case we look at does not necessarily require irreducible control flow,
but a normal loop is sufficient to create a non-affine region containing more
than one basic block that dominates the exit node. We replace this irreducible
control flow with a normal loop for the following reasons:
1) This is easier to understand
2) We will subsequently commit a patch that ensures Polly does not process
irreducible control flow.
Within non-affine regions, we could possibly handle irreducible control flow.
llvm-svn: 258496
In Polly, after hoisting loop invariant loads outside loop, the alignment
information for hoisted loads are missing, this patch restore them.
Contributed-by: Lawrence Hu <lawrence@codeaurora.org>
Differential Revision: http://reviews.llvm.org/D16160
llvm-svn: 258105
ISL 0.16 will change how sets are printed which breaks 117 unit tests
that text-compare printed sets. This patch re-formats most of these unit
tests using a script and small manual editing on top of that. When
actually updating ISL, most work is done by just re-running the script
to adapt to the changed output.
Some tests that compare IR and tests with single CHECK-lines that can be
easily updated manually are not included here.
The re-format script will also be committed afterwards. The per-test
formatter invocation command lines options will not be added in the near
future because it is ad hoc and would overwrite the manual edits.
Ideally it also shouldn't be required anymore because ISL's set printing
has become more stable in 0.16.
Differential Revision: http://reviews.llvm.org/D16095
llvm-svn: 257851
Call assumeNoOutOfBound only in updateDimensionality to process situations
when new dimensions are added and new bounds checks are required.
Contributed-by: Tobias Grosser, Gareev Roman
llvm-svn: 257170
If a loop has a sufficiently large amount of compute instruction in its loop
body, it is unlikely that our rewrite of the loop iterators introduces large
performance changes. As Polly can also apply beneficical optimizations (such
as parallelization) to such loop nests, we mark them as profitable.
This option is currently "disabled" by default, but can be used to run
experiments. If enabled by setting it e.g. to 40 instructions, we currently
see some compile-time increases on LNT without any significant run-time
changes.
llvm-svn: 256199
Scops that contain many complex branches are likely to result in complex domain
conditions that consist of a large (> 100) number of conjucts. Transforming
such domains is expensive and unlikely to result in efficient code. To avoid
long compile times we detect this case and skip such scops. In the future we may
improve this by either using non-affine subregions to hide such complex
condition structures or by exploiting in certain cases properties (e.g.,
dominance) that allow us to construct the domains of a scop in a way that
results in a smaller number improving conjuncts.
Example of a code that results in complex iteration spaces:
loop.header
/ | \ \
A0 A2 A4 \
\ / \ / \
A1 A3 \
/ \ / \ |
B0 B2 B4 |
\ / \ / |
B1 B3 ^
/ \ / \ |
C0 C2 C4 |
\ / \ / /
C1 C3 /
\ / /
loop backedge
llvm-svn: 256123
The patch fixes Bug 25759 produced by inappropriate handling of unsigned
maximum SCEV expressions by SCEVRemoveMax. Without a fix, we get an infinite
loop and a segmentation fault, if we try to process, for example,
'((-1 + (-1 * %b1)) umax {(-1 + (-1 * %yStart)),+,-1}<%.preheader>)'.
It also fixes a potential issue related to signed maximum SCEV expressions.
Tested-by: Roman Gareev <gareevroman@gmail.com>
Fixed-by: Tobias Grosser <tobias@grosser.es>
Differential Revision: http://reviews.llvm.org/D15563
llvm-svn: 255922
When generating scalar loads/stores separately the vector code has not been
updated. This commit adds code to generate scalar loads for vector code as well
as code to assert in case scalar stores are encountered within a vector loop.
llvm-svn: 255714
When rewriting the access functions of load/store statements, we are only
interested in the actual array memory location. The current code just took
the very first memory access, which could be a scalar or an array access. As
a result, we failed to update access functions even though this was requested
via .jscop.
llvm-svn: 255713
This reverts commit r255471.
Johannes raised in the post-commit review of r255471 the concern that PHI
writes in non-affine regions with two exiting blocks are not really MUST_WRITE,
but we just know that at least one out of the set of all possible PHI writes
will be executed. Modeling all PHI nodes as MUST_WRITEs is probably save, but
adding the needed documentation for such a special case is probably not worth
the effort. Michael will be proposing a new patch that ensures only a single
PHI_WRITE is created for non-affine regions, which - besides other benefits -
should also allow us to use a single well-defined MUST_WRITE for such PHI
writes.
(This is not a full revert, but the condition and documentation have been
slightly extended)
llvm-svn: 255503
LLVM's IR guarantees that a value definition occurs before any use, and
also the value of a PHI must be one of the incoming values, "written"
in one of the incoming blocks. Hence, such writes are never conditional
in the context of a non-affine subregion.
llvm-svn: 255471
When introducing separate control flow for the original and optimized code we
introduce now a special 'ExitingBlock':
\ /
EnteringBB
|
SplitBlock---------\
_____|_____ |
/ EntryBB \ StartBlock
| (region) | |
\_ExitingBB_/ ExitingBlock
| |
MergeBlock---------/
|
ExitBB
/ \
This 'ExitingBlock' contains code such as the final_reloads for scalars, which
previously were just added to whichever statement/loop_exit/branch-merge block
had been generated last. Having an explicit basic block makes it easier to
find these constructs when looking at the CFG.
llvm-svn: 255107
This update brings in improvements to isl's 'isolate' option that reduce the
number of code versions generated. This results in both code-size and compile
time reduction for outer loop vectorization.
Thanks to Roman Garev and Sven Verdoolaege for working on this improvement.
llvm-svn: 254706
gfortran (and fortran in general?) does not compute the address of an array
element directly from the array sizes (e.g., %s0, %s1), but takes first the
maximum of the sizes and 0 (e.g., max(0, %s0)) before multiplying the resulting
value with the per-dimension array subscript expressions. To successfully
delinearize index expressions as we see them in fortran, we first filter 'smax'
expressions out of the SCEV expression, use them to guess array size parameters
and only then continue with the existing delinearization.
llvm-svn: 253995
Trying to build up access functions for any of these blocks is likely to fail,
as error blocks may contain invalid/non-representable instructions, and blocks
dominated by error blocks may reference such instructions, which wil also cause
failures. As all of these blocks are anyhow assumed to not be executed, we can
just remove them early on.
This fixes http://llvm.org/PR25596
llvm-svn: 253818
At some point we enforced lcssa for the loop surrounding the entry block.
This is not only questionable as it does not check any other loop but also
not needed any more.
llvm-svn: 253789
In case the original parameter instruction does not have a name, but it comes
from a load instruction where the base pointer has a name we used the name of
the load instruction to give some more intuition of where the parameter came
from. To ensure this works also through GEPs which may have complex offsets,
we originally just dropped the offsets and _only_ used the base pointer name.
As this can result in multiple parameters to get the same name, we now prefix
the parameter ID to ensure parameter names are unique. This will make it easier
to understand debug output.
This change does not affect correctness, as parameter IDs (even of the same
name) can always be distinguished through the SCEV pointer stored inside them.
llvm-svn: 253330
Only when we check for wrapping we want to use the store size, for all
other cases we use the alloc size now.
Suggested by: Tobias Grosser <tobias@grosser.es>
llvm-svn: 252941
IVs of loops for which the loop header is in the subregion, but not the entire
loop may be incremented outside of the subregion and can consequently not be
kept private to the subregion. Instead, they need to and are modeled as virtual
loops in the iteration domains. As this is the case, generating new subregion
induction variables for such loops is not needed and indeed wrong as they would
hide the virtual induction variables modeled in the scop.
This fixes a miscompile in MultiSource/Benchmarks/Ptrdist/bc and
MultiSource/Benchmarks/nbench/. Thanks Michael and Johannes for their
investiagations and helpful observations regarding this bug.
llvm-svn: 252860
If an llvm.assume dominates the SCoP entry block and the assumed condition
can be expressed as an affine inequality we will now add it to the context.
Differential Revision: http://reviews.llvm.org/D14413
llvm-svn: 252851
Error blocks may contain arbitrary instructions, among them some which we can
not modeled correctly. As we do not generate ScopStmts for error blocks anyhow
there is no point in trying to generate access functions for them.
This fixes llvm.org/PR25494
llvm-svn: 252794
For complex inputs our current approach of construction the boundary context
may in rare cases become computationally so expensive that it is better to
abort. This change adds a compute out check that bounds the compuations we
spend on boundary context construction and bails out if this limit is reached.
We can probably make our boundary construction algorithm more efficient, but
this requires some more investigation and probably also some additional changes
to isl. Until these have been added, we bound the compile time to ensure our
buildbots are green.
llvm-svn: 252758
In certain rare cases (mostly -polly-process-unprofitable on large sequences
of conditions - often without any loop), we see some compile-time timeouts due
to the construction of an overly complex assumption context. This change limits
the number of disjuncts to 150 (adjustable), to prevent us from creating
assumptions contexts that are too large for even the compilation to finish.
The limit has been choosen as large as possible to make sure we do not
unnecessarily drop test coverage. If such cases also appear in
-polly-process-unprofitable=false mode we may need to think about this again,
as the current limitations may still allow assumptions that are way to complex
to be checked profitably at run-time.
There is also certainly room for improvement regarding how (and how efficient)
we construct an assumed context, but this requires some more thinking.
This completes llvm.org/PR25458
llvm-svn: 252750
Basic blocks that are always executed can not be error blocks as their execution
can not possibly be an unlikely event. In this commit we tighten the check
if an error block to basic blcoks that do not dominate the exit condition, but
that dominate all exiting blocks of the scop.
llvm-svn: 252726
r252713 introduced a couple of regressions due to later basic blocks refering
to instructions defined in error blocks which have not yet been modeled.
This commit is currently just encoding limitations of our modeling and code
generation backends to ensure correctness. In theory, we should be able to
generate and optimize such regions, as everything that is dominated by an error
region is assumed to not be executed anyhow. We currently just lack the code
to make this happen in practice.
llvm-svn: 252725
Thinking more about the last commit I came to realize that for testing the
new functionality it is sufficient to verify that the iteration domains
we construct for a simple test case do not contain any of the complexity that
caused compile time issues for larger inputs.
llvm-svn: 252714
Previously, we just skipped error blocks during scop construction. With
this change we make sure we can construct domains for error blocks such that
these domains can be forwarded to subsequent basic blocks.
This change ensures that basic blocks that post-dominate and are dominated by
a basic block that branches to an error condition have the very same iteration
domain as the branching basic block. Before, this change we would construct
a domain that excludes all error conditions. Such domains could become _very_
complex and were undesirable to build.
Another solution would have been to drop these constraints using a
dominance/post-dominance check instead of modeling the error blocks. Such
a solution could also work in case of unreachable statements or infinite
loops in the scop. However, as we currently (to my believe incorrectly) model
unreachable basic blocks in the post-dominance tree, such a solution is not
yet feasible and requires first a change to LLVM's post-dominance tree
construction.
This commit addresses the most sever compile time issue reported in:
http://llvm.org/PR25458
llvm-svn: 252713
Especially for structs, the SAI object of a base pointer does not
describe all the types that the user might expect when he loads from
that base pointer. While we will still cast integers and pointers we
will now reload the value with the correct type if floating point and
non-floating point values are involved. However, there are now TODOs
where we use bitcasts instead of a proper conversion or reloading.
This fixes bug 25479.
llvm-svn: 252706
We now create all invariant equivalence classes for required invariant loads
instead of creating them on-demand. This way we can check if a parameter
references an invariant load that is actually not executed and was therefor
not materialized. If that happens the parameter is not materialized either.
This fixes bug 25469.
llvm-svn: 252701
In case we also model scalar reads it can happen that a pointer appears in both
a scalar read access as well as the base pointer of an array access. As this
is a little surprising, we add a specific test case to document this behaviour.
To my understanding it should be OK to have a read from an array A[] and
read/write accesses to A[...]. isl is treating these arrays as unrelated as
their dimensionality differs. This seems to be correct as A[] remains constant
throughout the execution of the scop and is not affected by the reads/writes to
A[...]. If this causes confusion, it might make sense to make this behaviour
more obvious by using different names (e.g., A_scalar[], A[...]).
llvm-svn: 252615
Memory references are now printed as follows:
Old New
Scalars: i64 MemRef_val[*] i64 MemRef_val;
Arrays: i64 MemRef_A[*][%m][%o][8] i64 MemRef_A[*][%m][%o];
We do not print any more information about the element size in the type. Such
information has already been available in a comment after the scalar/array
declaration. It was redundant and did not match well with what people were used
from C.
llvm-svn: 252602
Scalar reloads in the generated entering block were not recognized as
dominating the subregions locks when there were multiple entering
nodes. This resulted in values defined in there not being copied.
As a fix, we unconditionally add the BBMap of the generated entering
node to the generated entry. This fixes part of llvm.org/PR25439.
This reverts 252449 and reapplies r252445. Its test was failing
indeterministically due to r252375 which was reverted in r252522.
llvm-svn: 252540
The dominance of the generated non-affine subregion block was based on
the scop's merge block, therefore resulted in an invalid DominanceTree.
It resulted in some values as assumed to be unusable in the actual
generated exit block.
We detect the case that the exit block has been moved and decide
dominance using the BB at the original exit. If we create another exit
node, that exit nodes is dominated by the one generated from where the
original exit resides. This fixes llvm.org/PR25438 and part of
llvm.org/PR25439.
llvm-svn: 252526
It introduced indeterminism as it was iterating over an address-indexed
hashtable. The corresponding bug PR25438 will be fixed in a successive
commit.
llvm-svn: 252522
This reverts commit 9775824b265e574fc541e975d64d3e270243b59d due to a
failing unit test.
Please check and correct the unit test and commit again.
llvm-svn: 252449
Scalar reloads in the generated entering block were not recognized as
dominating the subregions locks when there were multiple entering
nodes. This resulted in values defined in there not being copied.
As a fix, we unconditionally add the BBMap of the generated entering
node to the generated entry. This fixes part of llvm.org/PR25439.
llvm-svn: 252445
If a SCoP contains error blocks we cannot use the domain constraints
to simplify the assumptions as the domain is already influenced by the
assumptions we took. Before this patch we did that and some assumptions
became self-fulfilling as they were implied by the domain constraints.
llvm-svn: 252424
Even if a scalar and memory access have the same base pointer, we cannot use
one SAI object as the type but also the number of dimensions are wrong. For
the attached test case this caused a crash in the invariant load hoisting,
though it could cause various other problems too.
This fixes bug 25428 and a execution time bug in MallocBench/cfrac.
Reported-by: Jeremy Huddleston Sequoia <jeremyhu@apple.com>
llvm-svn: 252422
When we bail out early we make the partially build new code path
practically dead, though it was not unreachable. To remove dominance
problems we now make it not only dead but also prevent the control
flow to join with the original code path, thus allow to use original
values after the SCoP without any PHI nodes.
This fixes bug 25447.
llvm-svn: 252420
While the program cannot cause a dependence cycle between invariant
loads, additional constraints (e.g., to ensure finite loops) can
introduce them. It is hard to detect them in the SCoP description,
thus we will only check for them at code generation time. If such a
recursion is detected we will bail out the code generation and place a
"false" runtime check to guarantee the original code is used.
This fixes bug 25443.
llvm-svn: 252412
After loop versioning, a dominance check of a non-affine subregion's
exit node causes the dominance check to always fail on any block in the
subregion if it shares the same exit block with the scop. The
subregion's exit block has become polly_merge_new_and_old, which also
receives the control flow of the generated code. This would cause that
any value for implicit stores is assumed to be not from the scop.
We check dominance with the generated exit node instead.
This fixes llvm.org/PR25438
llvm-svn: 252375
We were adding all generated values in non-affine subregions to be used
for the subregions generated exit block. The thought was that only
values that are dominating the original exit block can be used there.
But it is possible for synthesizable values to be expanded in any
block. If the same values is also used for implicit writes, it would
try to reuse already synthesized values even if not dominating the exit
block.
The fix is to only add values to the list of values usable in the exit
block only if it is dominating the exit block. This fixes
llvm.org/PR25412.
llvm-svn: 252301
Before this commit memory reference identifiers have only been unique per
basic block, but not per (non-affine) ScopStmt. This commit now uses the
MemoryAccess base pointer to uniquely identify each Memory access.
llvm-svn: 252200
For generating scalar writes of non-affine subregions, all except phi
writes are generated in the exit block. The phi writes are generated in
the incoming block for which we errornously used the same BBMap. This
can conflict if a value for one block is synthesized, and then reused
for another block which is not dominated by the first block. This is
fixed by using block-specific BBMaps for phi writes.
llvm-svn: 252172
An incoming value from a block the is not inside the scop is an
external use, even if the phi is inside the scop. A previous fix in
r251208 did not apply if the phi is inside a non-affine subregion. We
move the check for this phi case before the non-affine subregion check.
llvm-svn: 252157
To simplify and correct the preloading of a base pointer origin, e.g.,
the base pointer for the current indirect invariant load, we now just
check if there is an invariant access class that involves the base
pointer of the current class.
llvm-svn: 251962
We do not need to model read-only statements in the SCoP as they will
not cause any side effects that are visible to the outside anyway.
Removing them should safe us time and might even simplify the ASTs we
generate.
Differential Revision: http://reviews.llvm.org/D14272
llvm-svn: 251948
If a base pointer of a preloaded value has a base pointer origin, thus it is
an indirect invariant load, we have to make sure the base pointer origin is
preloaded first.
llvm-svn: 251946
ScalarEvolution doesn't allow the operands of an AddRec to be variant in the
loop of the AddRec. When we rewrite parameter SCEVs it might seem like the
new SCEV violates this property and ScalarEvolution will trigger an
assertion. To avoid this we move the start part out of an AddRec when we
rewrite it, thus avoid the operands to be possibly variant completely.
llvm-svn: 251945
If a base pointer load is preloaded, we have change the base pointer of
the derived SAI. However, as the derived SAI relationship is is
coarse grained, we need to check if we actually preloaded the base
pointer or a different element of the base pointer SAI array.
llvm-svn: 251881
In some cases different memory accesses access the very same array using a
different multi-dimensional array layout where the same dimensions have
different sizes. Instead of asserting when encountering this issue, we
gracefully bail out for this scop.
This fixes llvm.org/PR25252
llvm-svn: 251791
Volatile or atomic memory accesses are currently not supported. Neither did
we think about any special handling needed nor do we support the unknown
instructions the alias set tracker turns them into sometimes. Before this
patch, us not supporting unkown instructions in an alias set caused the
following assertion failures:
Assertion `AG.size() > 1 && "Alias groups should contain at least two accesses"'
failed
llvm-svn: 251234
When verifying if a scop is still valid we rerun all analysis, but did not
update DetectionContextMap. This change ensures that information, e.g. about
non-affine regions, is correctly updated
llvm-svn: 251227
the size expression.
We previously only checked if the size expression is 'undef', but allowed size
expressions of the form 'undef * undef' by accident. After this change we now
require size expressions to be affine which implies no 'undef' appears anywhere
in the expression.
llvm-svn: 251225
of the Region are external.
During code generation we split off the parts of the PHI nodes in the entry
block, which have incoming blocks that are not part of the region. As these
split-off PHI nodes then are external uses, we consequently also need to model
these uses in ScopInfo.
llvm-svn: 251208
Such PHI nodes can not only appear in the ExitBlock of the Scop, but indeed
any scalar PHI node above the scop and used in the scop is modeled as scalar
read access.
llvm-svn: 251198
We isolate full tiles from partial tiles to be able to, for example, vectorize
loops with parametric lower and/or upper bounds.
If we use -polly-vectorizer=stripmine, we can see execution-time improvements:
correlation from 1m7361s to 0m5720s (-67.05 %), covariance from 1m5561s to
0m5680s (-63.50 %), ary3 from 2m3201s to 1m2361s (-46.72 %), CrystalMk from
8m5565s to 7m4285s (-13.18 %).
The current full/partial tile separation increases compile-time more than
necessary. As a result, we see in compile time regressions, for example, for 3mm
from 0m6320s to 0m9881s (56.34%). Some of this compile time increase is expected
as we generate more IR and consequently more time is spent in the LLVM backends.
However, a first investiagation has shown that a larger portion of compile time
is unnecessarily spent inside Polly's parallelism detection and could be
eliminated by propagating existing knowledge about vector loop parallelism.
Before enabling -polly-vectorizer=stripmine by default, it is necessary to
address this compile-time issue.
Contributed-by: Roman Gareev <gareevroman@gmail.com>
Reviewers: jdoerfert, grosser
Subscribers: grosser, #polly
Differential Revision: http://reviews.llvm.org/D13779
llvm-svn: 250809
New values were always synthesized in the block of the instruction
that needed them. This is incorrect for PHI node whose' value must be
defined in the respective incoming block. This patch temporarily moves
the builder's insert point to the incoming block while synthesizing phi
node arguments.
This fixes PR25241 (http://llvm.org/bugs/show_bug.cgi?id=25241)
llvm-svn: 250693
There are several different kinds of constants that could occur in a
branch condition, however we can only handle the most interesting one
namely constant integers. To this end we have to treat others as
non-affine.
This fixes bug 25244.
llvm-svn: 250669
We build the schedule based on a traversal of the region and accumulate
information for each loop in it. The total schedule is associated with the
loop surrounding the SCoP, though it can happen that there are blocks in the
SCoP which are part of loops that are only partially in the SCoP. Instead of
associating information with them (they are not part of the SCoP and
consequently are not modeled) we have to associate the schedule information
with the surrounding loop if any.
This fixes bug 25240.
llvm-svn: 250668
Accesses that have a relative offset (in bytes) that is not divisible
by the type size (in bytes) will be represented as empty in the SCoP
description. This is on its own not good but it also crashed the
invariant load hoisting. This patch will fix the latter problem while
the former should be addressed too.
This fixes bug 25236.
llvm-svn: 250664
If the base pointer of a load is invariant and defined in the SCoP but
not loaded we cannot hoist the load as we would not hoist the base
pointer definition.
This fixes bug 25237.
llvm-svn: 250663
Sorting is replaced by a demand driven code generation that will pre-load a
value when it is needed or, if it was not needed before, at some point
determined by the order of invariant accesses in the program. Only in very
little cases this demand driven pre-loading will kick in, though it will
prevent us from generating faulty code. An example where it is needed is
shown in:
test/ScopInfo/invariant_loads_complicated_dependences.ll
Invariant loads that appear in parameters but are not on the top-level (e.g.,
the parameter is not a SCEVUnknown) will now be treated correctly.
Differential Revision: http://reviews.llvm.org/D13831
llvm-svn: 250655
Polly can now be used as a analysis only tool as long as the code
generation is disabled. However, we do not have an alternative to the
independent blocks pass in place yet, though in the relevant cases
this does not seem to impact the performance much. Nevertheless, a
virtual alternative that allows the same transformations without
changing the input region will follow shortly.
llvm-svn: 250652
Expressing this in terms of BlockGenerator::getOrCreateAlloca(const
ScopArrayInfo *Array) does not work as the MemoryAccess BasePtr is in case of
invariant load hoisting different to the ScopArrayInfo BasePtr. Until this is
investigated and fixed, we move back to code that just uses the baseptr of
MemoryAccess.
llvm-svn: 250637