As Eli pointed out (and I got wrong in the first place), langref says: "The
getelementptr returns a vector of pointers, instead of a single address, when one
or more of its arguments is a vector. In such cases, all vector arguments should
have the same number of elements, and every scalar argument will be effectively
broadcast into a vector during address calculation."
Costantfold for gep doesn't really take in account this paragraph, returning a
pointer instead of a vector of pointer which triggers an assertion in RAUW,
as we're trying to replace values with mistmatching types.
Differential Revision: https://reviews.llvm.org/D37928
llvm-svn: 313394
Previously the 'Padding' argument was the number of padding
bytes to add. However most callers that use 'Padding' know
how many overall bytes they need to write. With the previous
code this would mean encoding the LEB once to find out how
many bytes it would occupy and then using this to calulate
the 'Padding' value.
See: https://reviews.llvm.org/D36595
Differential Revision: https://reviews.llvm.org/D37494
llvm-svn: 313393
It enables OptimizationRemarkEmitter::allowExtraAnalysis and MachineOptimizationRemarkEmitter::allowExtraAnalysis to return true not only for -fsave-optimization-record but when specific remarks are requested with
command line options.
The diagnostic handler used to be callback now this patch adds a class
DiagnosticHandler. It has virtual method to provide custom diagnostic handler
and methods to control which particular remarks are enabled.
However LLVM-C API users can still provide callback function for diagnostic handler.
llvm-svn: 313390
It enables OptimizationRemarkEmitter::allowExtraAnalysis and MachineOptimizationRemarkEmitter::allowExtraAnalysis to return true not only for -fsave-optimization-record but when specific remarks are requested with
command line options.
The diagnostic handler used to be callback now this patch adds a class
DiagnosticHandler. It has virtual method to provide custom diagnostic handler
and methods to control which particular remarks are enabled.
However LLVM-C API users can still provide callback function for diagnostic handler.
llvm-svn: 313382
- Create helper function for resolving weak references.
- Add test that preproduces the crash.
Differential Revision: https://reviews.llvm.org/D37916
llvm-svn: 313381
This caused PR34629: asserts firing when building Chromium. It also broke some
buildbots building test-suite as reported on the commit thread.
> Summary:
> 1/ Operand folding during complex pattern matching for LEAs has been
> extended, such that it promotes Scale to accommodate similar operand
> appearing in the DAG.
> e.g.
> T1 = A + B
> T2 = T1 + 10
> T3 = T2 + A
> For above DAG rooted at T3, X86AddressMode will no look like
> Base = B , Index = A , Scale = 2 , Disp = 10
>
> 2/ During OptimizeLEAPass down the pipeline factorization is now performed over LEAs
> so that if there is an opportunity then complex LEAs (having 3 operands)
> could be factored out.
> e.g.
> leal 1(%rax,%rcx,1), %rdx
> leal 1(%rax,%rcx,2), %rcx
> will be factored as following
> leal 1(%rax,%rcx,1), %rdx
> leal (%rdx,%rcx) , %edx
>
> 3/ Aggressive operand folding for AM based selection for LEAs is sensitive to loops,
> thus avoiding creation of any complex LEAs within a loop.
>
> Reviewers: lsaba, RKSimon, craig.topper, qcolombet
>
> Reviewed By: lsaba
>
> Subscribers: spatel, igorb, llvm-commits
>
> Differential Revision: https://reviews.llvm.org/D35014
llvm-svn: 313376
Summary:
The checksums had already been placed in the IR, this patch allows
MCCodeView to actually write it out to an MCStreamer.
Subscribers: llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D37157
llvm-svn: 313374
The early out for AVX2 in lowerV2X128VectorShuffle is positioned in a weird spot below some shuffle mask equivalency checks.
But I think we want to allow VPERMQ for any unary shuffle.
Differential Revision: https://reviews.llvm.org/D37893
llvm-svn: 313373
When handling a v64i1 build vector of constants on 32-bit targets we were creating an illegal i64 constant that we then bitcasted back to v64i1. We need to instead create two 32-bit constants, bitcast them to v32i1 and concat the result. We should also take care to handle the halves being all zeros/ones after the split.
This patch splits the build vector and then recursively lowers the two pieces. This allows us to handle the all ones and all zeros cases with minimal effort. Ideally we'd just do the split and concat, and let lowering get called again on the new nodes, but getNode has special handling for CONCAT_VECTORS that reassembles the pieces back into a single BUILD_VECTOR. Hopefully the two temporary BUILD_VECTORS we had to create to do this that don't get returned don't cause any issues.
Fixes PR34605.
Differential Revision: https://reviews.llvm.org/D37858
llvm-svn: 313366
Currently if we're inserting 0s into the upper elements of a vector register we insert an explicit move of the smaller register to implicitly zero the upper bits. But if we can prove that they are already zero we can skip that. This is based on a similar idea of what we do to avoid emitting explicit zero extends for GR32->GR64.
Unfortunately, this is harder for vector registers because there are several opcodes that don't have VEX equivalent instructions, but can write to XMM registers. Among these are SHA instructions and a MMX->XMM move. Bitcasts can also get in the way.
So for now I'm starting with explicitly allowing only VPMADDWD because we emit zeros in combineLoopMAddPattern. So that is placing extra instruction into the reduction loop.
I'd like to allow PSADBW as well after D37453, but that's currently blocked by a bitcast. We either need to peek through bitcasts or canonicalize insert_subvectors with zeros to remove bitcasts on the value being inserted.
Longer term we should probably have a cleanup pass that removes superfluous zeroing moves even when the producer is in another basic block which is something these isel tricks can't do. See PR32544.
Differential Revision: https://reviews.llvm.org/D37653
llvm-svn: 313365
Add a profitability heuristic to enable runtime unrolling of multi-exit
loop: There can be atmost two unique exit blocks for the loop and the
second exit block should be a deoptimizing block. Also, there can be one
other exiting block other than the latch exiting block. The reason for
the latter is so that we limit the number of branches in the unrolled
code to being at most the unroll factor. Deoptimizing blocks are rarely
taken so these additional number of branches created due to the
unrolling are predictable, since one of their target is the deopt block.
Reviewers: apilipenko, reames, evstupac, mkuper
Subscribers: llvm-commits
Reviewed by: reames
Differential Revision: https://reviews.llvm.org/D35380
llvm-svn: 313363
This removes the duplicate HVX instruction set for the 128-byte mode.
Single instruction set now works for both modes (64- and 128-byte).
llvm-svn: 313362
During runtime unrolling on loops with multiple exits, we update the
exit blocks with the correct phi values from both original and remainder
loop.
In this process, we lookup the VMap for the mapped incoming phi values,
but did not update the VMap if a default entry was generated in the VMap
during the lookup. This default value is generated when constants or
values outside the current loop are looked up.
This patch fixes the assertion failure when null entries are present in
the VMap because of this lookup. Added a testcase that showcases the
problem.
llvm-svn: 313358
This adds support for allowing v8f16 vector types, thus avoiding conversions
from/to single precision for these types. This is a follow up patch of
commits r311154 and r312104, which added support for scalars and v4f16
types, respectively.
Differential Revision: https://reviews.llvm.org/D37802
llvm-svn: 313351
removing them"
This was temporarily reverted, but now that the fix has been commited (r313197)
it should be put back in place.
https://bugs.llvm.org/show_bug.cgi?id=34502
This reverts commit 9ef93d9dc4c51568e858cf8203cd2c5ce8dca796.
llvm-svn: 313349
Patch tries to improve vectorization of the following code:
void add1(int * __restrict dst, const int * __restrict src) {
*dst++ = *src++;
*dst++ = *src++ + 1;
*dst++ = *src++ + 2;
*dst++ = *src++ + 3;
}
Allows to vectorize even if the very first operation is not a binary add, but just a load.
Reviewers: spatel, mzolotukhin, mkuper, hfinkel, RKSimon, filcab, ABataev, davide
Subscribers: llvm-commits, RKSimon
Differential Revision: https://reviews.llvm.org/D28907
llvm-svn: 313348
Summary:
1/ Operand folding during complex pattern matching for LEAs has been
extended, such that it promotes Scale to accommodate similar operand
appearing in the DAG.
e.g.
T1 = A + B
T2 = T1 + 10
T3 = T2 + A
For above DAG rooted at T3, X86AddressMode will no look like
Base = B , Index = A , Scale = 2 , Disp = 10
2/ During OptimizeLEAPass down the pipeline factorization is now performed over LEAs
so that if there is an opportunity then complex LEAs (having 3 operands)
could be factored out.
e.g.
leal 1(%rax,%rcx,1), %rdx
leal 1(%rax,%rcx,2), %rcx
will be factored as following
leal 1(%rax,%rcx,1), %rdx
leal (%rdx,%rcx) , %edx
3/ Aggressive operand folding for AM based selection for LEAs is sensitive to loops,
thus avoiding creation of any complex LEAs within a loop.
Reviewers: lsaba, RKSimon, craig.topper, qcolombet
Reviewed By: lsaba
Subscribers: spatel, igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D35014
llvm-svn: 313343
Summary:
For readers unfamiliar with the XRay code base, reference the compiler-rt
implementation even though we're not allowed to share any code and explain
our little-endian views more clearly.
For code clarity either get rid of obvious comments or explain their
intentions, fix typos, correct coding style according to LLVM's standards
and manually CSE long expressions to point out it is the same expression.
Reviewers: dberris
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D34339
llvm-svn: 313340
Somehow this was compiling without these methods having their arguments
passed to them. I used these methods in some code I wrote and it raised
an error on me. It appears no one else has used these methods let (LLD
uses setSymbolAndType however). This change resolves the issue.
Patch by Jake Ehrlich
Differential Revision: https://reviews.llvm.org/D35100
llvm-svn: 313336
This patch is still breaking several multi-stage compiler-rt bots.
I already know what the fix is, but I want to get the bots green
for now and then try re-applying in the morning.
llvm-svn: 313335
Summary:
This will be used instead of the url field to track which commits need
to be merged.
This patch also drops support for version 1.x of the bugzilla CLI tool.
Reviewers: hansw, hans
Reviewed By: hans
Subscribers: hans, llvm-commits
Differential Revision: https://reviews.llvm.org/D37786
llvm-svn: 313334
To further reduce duplicate code, this patch introduces a module
that configs can simply import and get access to a lot of useful
functionality such as setting up paths, adding features that are
useful across all projects, and other utility-type functions.
For now this only updates llvm's suite to use this new library,
but subsequent patches will update other projects.
Differential Revision: https://reviews.llvm.org/D37778
llvm-svn: 313325
Summary: Move to LoopUtils method that collects all children of a node inside a loop.
Reviewers: majnemer, sanjoy
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D37870
llvm-svn: 313322
This is stepping stone towards honoring -fdata-sections
and letting the assembler decide how many wasm data
segments to create.
Differential Revision: https://reviews.llvm.org/D37834
llvm-svn: 313313
WindowsManifestMerger.h should not include llvm/Config/config.h, since it is private. The include has been moved to the source instead.
Summary:
The checksums had already been placed in the IR, this patch allows
MCCodeView to actually write it out to an MCStreamer.
Move private config.h header dependency out of public header file.
Addresses Bug 34608
Subscribers: javed.absar, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D37863
llvm-svn: 313312