G_ANYEXT can be introduced by the legalizer when widening scalars. Add
support for it in the register bank info (same mapping as everything
else) and in the instruction selector.
When selecting it, we treat it as a COPY, just like G_TRUNC. On this
occasion we get rid of some assertions in selectCopy so we can reuse it.
This shouldn't be a problem at the moment since we're not supporting any
complicated cases (e.g. FPR, different register banks). We might want to
separate the paths when we do.
llvm-svn: 302778
Summary:
Move getX86ConditionCode() from X86FastISel.cpp to X86InstrInfo.cpp so it can be used by GloabalIsel instruction selector.
This is a pre-commit for a patch I'm working on to support G_ICMP. NFC.
Reviewers: zvi, guyblank, delena
Reviewed By: guyblank, delena
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D33038
llvm-svn: 302767
This time it actually occurred to me to change the #defines
to actually test the pre-processed out codepath. Hopefully
this time it works.
llvm-svn: 302752
This reverts r302712.
The change fails with ASAN enabled:
ERROR: AddressSanitizer: use-after-poison on address ... at ...
READ of size 2 at ... thread T0
#0 ... in llvm::SDNode::getNumValues() const <snip>/include/llvm/CodeGen/SelectionDAGNodes.h:855:42
#1 ... in llvm::SDNode::hasAnyUseOfValue(unsigned int) const <snip>/lib/CodeGen/SelectionDAG/SelectionDAG.cpp:7270:3
#2 ... in llvm::SDValue::use_empty() const <snip> include/llvm/CodeGen/SelectionDAGNodes.h:1042:17
#3 ... in (anonymous namespace)::DAGCombiner::MergeConsecutiveStores(llvm::StoreSDNode*) <snip>/lib/CodeGen/SelectionDAG/DAGCombiner.cpp:12944:7
Reviewers: niravd
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D33081
llvm-svn: 302746
// (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
This canonicalization was added at:
https://reviews.llvm.org/rL7264
By moving xors out/down, we can more easily combine constants. I'm adding
tests that do not change with this patch, so we can verify that those kinds
of transforms are still happening.
This is no-functional-change-intended because there's a later fold:
// (X^C)|Y -> (X|Y)^C iff Y&C == 0
...and demanded-bits appears to guarantee that any fold that would have
hit the fold we're removing here would be caught by that 2nd fold.
Similar reasoning was used in:
https://reviews.llvm.org/rL299384
The larger motivation for removing this code is that it could interfere with
the fix for PR32706:
https://bugs.llvm.org/show_bug.cgi?id=32706
Ie, we're not checking if the 'xor' is actually a 'not', so we could reverse
a 'not' optimization and cause an infinite loop by altering an 'xor X, -1'.
Differential Revision: https://reviews.llvm.org/D33050
llvm-svn: 302733
r271020 added an early out to skip the signed multiply portion of ConstantRange::multiply. The comment says we don't need to do signed multiply if the range is only positive numbers, but the implemented check only ensures that the start of the range is positive. It doesn't look at the end of the range.
This patch checks the end of the range instead. Because Upper is one more than the end we have to see if its positive or if its one past the last positive number.
llvm-svn: 302717
Summary:
Allow consecutive stores whose values come from consecutive loads to
merged in the presense of other uses of the loads. Previously this was
disallowed as in general the merged load cannot be shared with the
other uses. Merging N stores into 1 may cause as many as N redundant
loads. However in the context of caching this should have neglible
affect on memory pressure and reduce instruction count making it
almost always a win.
Fixes PR32086.
Reviewers: spatel, jyknight, andreadb, hfinkel, efriedma
Reviewed By: efriedma
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30471
llvm-svn: 302712
This fixes a ubsan bot failure after r302597, which made getProfileCount
non-static, but ended up invoking it on a null ProfileSummaryInfo object
in some cases from buildModuleSummaryIndex.
Most testing passed because the non-static getProfileCount currently
doesn't access any member variables, but I found this when testing a
follow on patch (D32877) that adds a member variable access.
llvm-svn: 302705
This lets toString take advantage of the degenerate case checks in udivrem and is just generally cleaner.
One minor downside of this is that the divisor APInt now needs to be the same size as Tmp which requires an additional allocation. But we were doing a poor job of reusing allocations before so the new code should still be an improvement.
llvm-svn: 302704
For stores, check if the stored value is defined by a floating point
instruction and if yes, we return a default mapping with FPR instead
of GPR.
llvm-svn: 302679
The new experimental reduction intrinsics can now be used, so I'm enabling this
for AArch64. We will need this for SVE anyway, so it makes sense to do this for
NEON reductions as well.
The existing code to match shufflevector patterns are replaced with a direct
lowering of the reductions to AArch64-specific nodes. Tests updated with the
new, simpler, representation.
Differential Revision: https://reviews.llvm.org/D32247
llvm-svn: 302678
The first test in this file is duplicated exactly in and.ll -> test33.
We have commuted and vector variants there too.
The second test is a composite of 2 folds. The first fold is tested
independently in add.ll -> flip_and_mask (including vector variant).
After that transform fires, the IR is identical to the first transform.
llvm-svn: 302676
The script at utils/update_test_checks.py has (had?) a bug when variables
start with the same sequence of letters (clearly, not all of the time).
llvm-svn: 302674
This adds a few missing instructions for the assembler and
disassembler. Those should be the last missing general-
purpose (Chapter 7) instructions for the z10 ISA.
llvm-svn: 302667
This adds the remaining general arithmetic instructions
for assembler / disassembler use. Most of these are not
useful for codegen; a few might be, and those are listed
in the README.txt for future improvements.
llvm-svn: 302665
The previous code was discarding the error message from
createBinary() by calling errorToErrorCode().
This meant that such error were always reported unhelpfully
as "Invalid data was encountered while parsing the file".
Other tools such as llvm-objdump already produce a more
the error message in this case.
Differential Revision: https://reviews.llvm.org/D32985
llvm-svn: 302664
This is another step towards favoring 'not' ops over random 'xor' in IR:
https://bugs.llvm.org/show_bug.cgi?id=32706
This transformation may have occurred in longer IR sequences using computeKnownBits,
but that could be much more expensive to calculate.
As the scalar result shows, we do not currently favor 'not' in all cases. The 'not'
created by the transform is transformed again (unnecessarily). Vectors don't have
this problem because vectors are (wrongly) excluded from several other combines.
llvm-svn: 302659
This patch is the fourth patch in a series of reviews for the Altmacro feature.
This patch introduces a new escape character '!' and it depends on D32701.
according to https://sourceware.org/binutils/docs/as/Altmacro.html:
"single-character string escape
To include any single character literally in a string (even if the character would otherwise have some special meaning), you can prefix the character with !' (an exclamation mark). For example, you can write <4.3 !> 5.4!!>' to get the literal text `4.3 > 5.4!'. "
Differential Revision: https://reviews.llvm.org/D32792
llvm-svn: 302652
Summary:
When trying to figure out if MBB could fallthrough to ToMBB (possibly by
falling through a bunch of other MBBs) we didn't actually check if there
was fallthrough between the last two blocks in the chain.
Reviewers: kparzysz, iteratee, MatzeB
Reviewed By: kparzysz, iteratee
Subscribers: javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D32996
llvm-svn: 302650
This method must return a valid register class, or the list-ilp isel
scheduler will crash. For MVT::Untyped nullptr was previously returned, but
now ADDR128BitRegClass is returned instead. This is needed just as long as
list-ilp (and probably also list-hybrid) is still there.
Review: Ulrich Weigand, A Trick
https://reviews.llvm.org/D32802
llvm-svn: 302649
The assembler and disassmebler test cases started out formatted and
sorted in a particular way, but this got lost over time as patches
were added. Reformat them again. NFC.
llvm-svn: 302642
This pass doesn't correctly handle testing for when it is legal to hoist
arbitrary instructions. The whitelist happens to make it safe, so before
it is removed the pass's legality checks will need to be enhanced.
Details have been added to the code review thread for the patch.
llvm-svn: 302640
For the ELF case, the default/preferred form is the generic one, not
the short one as used for Apple - fix the comment to say so. Currently
it is a copy-paste typo.
Make the comments on the darwin default a bit more verbose.
Use enum names instead of literal 0/1 to further increase readability
and reduce fragility.
Differential Revision: https://reviews.llvm.org/D32963
llvm-svn: 302634
This pass uses a new target hook to decide whether or not to expand a particular
intrinsic to the shuffevector sequence.
Differential Revision: https://reviews.llvm.org/D32245
llvm-svn: 302631
Summary:
MachineRegisterInfo::constrainRegClass() can fail if two register classes
don't have a common subclass or if the register class doesn't contain
enough registers. Check the return value before trying to remove Phi nodes,
and if we can't constrain, we output a COPY instead of simply replacing
registers.
Reviewers: kparzysz, david2050, wmi
Reviewed By: kparzysz
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D32999
llvm-svn: 302622
This is a follow-up to r302611, which moved an -O0 computation of DT
from SDAGISel to TwoAddress.
Don't use it here either, and avoid computing it completely. The only
use was forwarding the analysis as an optional argument to utility
functions.
Differential Revision: https://reviews.llvm.org/D32766
llvm-svn: 302612
Before r247167, the pass manager builder controlled which AA
implementations were used, exporting them all in the AliasAnalysis
analysis group.
Now, AAResultsWrapperPass always uses BasicAA, but still uses other AA
implementations if made available in the pass pipeline.
But regardless, SDAGISel is required at O0, and really doesn't need to
be doing fancy optimizations based on useful AA results.
Don't require AA at CodeGenOpt::None, and only use it otherwise.
This does have a functional impact (and one testcase is pessimized
because we can't reuse a load). But I think that's desirable no matter
what.
Note that this alone doesn't result in less DT computations: TwoAddress
was previously able to reuse the DT we computed for SDAG. That will be
fixed separately.
Differential Revision: https://reviews.llvm.org/D32766
llvm-svn: 302611
We currently require SCEV, which requires DT/LI. Those are expensive to
compute, but the pass only runs for functions that have the safestack
attribute.
Compute DT/LI to build SCEV lazily, only when the pass is actually going
to transform the function.
Differential Revision: https://reviews.llvm.org/D31302
llvm-svn: 302610
This lets the pass focus on gathering the required analyzes, and the
utility class focus on the transformation.
Differential Revision: https://reviews.llvm.org/D31303
llvm-svn: 302609
This should hopefully makes changes to the O0 pipeline obvious; it's
easy to require expensive passes, and this helps make informed
decisions.
Case in point: in the few weeks separating the time when I initially
wrote this patch to the time when I committed, the test regressed as
r302103 added another use of DT!
llvm-svn: 302608
This warning didn't show up on my local build
but is causing the bots to fail. Seems like a
bad idea to have types and variables with the
same name anyhow.
Differential Revision: https://reviews.llvm.org/D33022
llvm-svn: 302606
Previously we had only supported the importing and
exporting of functions and globals.
Also, add usefull overload of getWasmSymbol() and
getNumberOfSymbols() in support of lld port.
Differential Revision: https://reviews.llvm.org/D33011
llvm-svn: 302601
This change is required because the notion of count is different for
sample profiling and getProfileCount will need to determine the
underlying profile type.
Differential revision: https://reviews.llvm.org/D33012
llvm-svn: 302597
frames.
RuntimeDyld was previously responsible for tracking allocated EH frames, but it
makes more sense to have the RuntimeDyld::MemoryManager track them (since the
frames are allocated through the memory manager, and written to memory owned by
the memory manager). This patch moves the frame tracking into
RTDyldMemoryManager, and changes the deregisterFrames method on
RuntimeDyld::MemoryManager from:
void deregisterEHFrames(uint8_t *Addr, uint64_t LoadAddr, size_t Size);
to:
void deregisterEHFrames();
Separating this responsibility will allow ORC to continue to throw the
RuntimeDyld instances away post-link (saving a few dozen bytes per lazy
function) while properly deregistering frames when modules are unloaded.
This patch also updates ORC to call deregisterEHFrames when modules are
unloaded. This fixes a bug where an exception that tears down the JIT can then
unwind through dangling EH frames that have been deallocated but not
deregistered, resulting in UB.
For people using SectionMemoryManager this should be pretty much a no-op. For
people with custom allocators that override registerEHFrames/deregisterEHFrames,
you will now be responsible for tracking allocated EH frames.
Reviewed in https://reviews.llvm.org/D32829
llvm-svn: 302589
Summary:
This fixes the immediate crash caused by introducing an incorrect inttoptr
before attempting the conversion. There may still be a legality
check missing somewhere earlier for non-integral pointers, but this change
seems necessary in any case.
Reviewers: sanjoy, dberlin
Reviewed By: dberlin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D32623
llvm-svn: 302587
The AArch64 instruction set has a few "widening" instructions (e.g., uaddl,
saddl, uaddw, etc.) that take one or more doubleword operands and produce
quadword results. The operands are automatically sign- or zero-extended as
appropriate. However, in LLVM IR, these extends are explicit. This patch
updates TTI to consider these widening instructions as single operations whose
cost is attached to the arithmetic instruction. It marks extends that are part
of a widening operation "free" and applies a sub-target specified overhead
(zero by default) to the arithmetic instructions.
Differential Revision: https://reviews.llvm.org/D32706
llvm-svn: 302582
The motivation for getting rid of dyn_castNotVal is to allow fixing:
https://bugs.llvm.org/show_bug.cgi?id=32706
So this was supposed to be functional-change-intended for the case
of inverting constants and applying DeMorgan. However, I can't find
any cases where that pattern will actually get to matchDeMorgansLaws()
because we have other folds in visitAnd/visitOr that do the same
thing. So this ends up just being a clean-up patch with slight efficiency
improvement, but no-functional-change-intended.
llvm-svn: 302581
Fixes inalloca parameters, which previously all pointed to the same
offset. Extend the test to use llvm-readobj so that we can test the
offset in a readable way.
llvm-svn: 302578
As recently discussed on llvm-dev [1], this patch makes it illegal for
two Functions to point to the same DISubprogram and updates
FunctionCloner to also clone the debug info of a function to conform
to the new requirement. To simplify the implementation it also factors
out the creation of inlineAt locations from the Inliner into a
general-purpose utility in DILocation.
[1] http://lists.llvm.org/pipermail/llvm-dev/2017-May/112661.html
<rdar://problem/31926379>
Differential Revision: https://reviews.llvm.org/D32975
This reapplies r302469 with a fix for a bot failure (reparentDebugInfo
now checks for the case the orig and new function are identical).
llvm-svn: 302576
Summary:
Since I will post patch with some changes to
replaceDominatedUsesWith, it would be good to avoid
duplicating code again.
Reviewers: davide, dberlin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D32798
llvm-svn: 302575
Use variadic templates instead of relying on <cstdarg> + sentinel.
This enforces better type checking and makes code more readable.
Differential Revision: https://reviews.llvm.org/D32541
llvm-svn: 302571
Summary: computeKnownBitsForTargetNode was not defined for Lanai which resulted in additional AND's with 0x1 for the output of SETCC instructions.
Reviewers: eliben, majnemer
Reviewed By: majnemer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29605
llvm-svn: 302568
The check for valid start function was inverted. Added a new
test in test/Object to check this case and fixed the existing
tests in for ObjectYAML.
Differential Revision: https://reviews.llvm.org/D32986
llvm-svn: 302560
--This line, and those below, will be igored--
A utils/vscode
A utils/vscode/README
A utils/vscode/tablegen
A utils/vscode/tablegen/.vscode
A utils/vscode/tablegen/.vscode/launch.json
A utils/vscode/tablegen/CHANGELOG.md
A utils/vscode/tablegen/README.md
A utils/vscode/tablegen/language-configuration.json
A utils/vscode/tablegen/package.json
A utils/vscode/tablegen/syntaxes
A utils/vscode/tablegen/syntaxes/TableGen.tmLanguage
A utils/vscode/tablegen/vsc-extension-quickstart.md
llvm-svn: 302553
The way we currently define congruency for two PHIExpression(s) is:
1) The operands to the phi functions are congruent
2) The PHIs are defined in the same BasicBlock.
NewGVN works under the assumption that phi operands are in predecessor
order, or at least in some consistent order. OTOH, is valid IR:
patatino:
%meh = phi i16 [ %0, %winky ], [ %conv1, %tinky ]
%banana = phi i16 [ %0, %tinky ], [ %conv1, %winky ]
br label %end
and the in-memory representations of the two SSA registers have an
inconsistent order. This violation of NewGVN assumptions results into
two PHIs found congruent when they're not. While we think it's useful
to have always a consistent order enforced, let's fix this in NewGVN
sorting uses in predecessor order before creating a PHI expression.
Differential Revision: https://reviews.llvm.org/D32990
llvm-svn: 302552
The description says it returns the number of words needed to represent the results. But the way it was coded it always returns (lhsWords + rhsWords) or (lhsWords + rhsWords - 1). But the result could be even smaller than that and it wouldn't tell you.
No one uses the result today so rather than try to fix it, just remove it.
llvm-svn: 302551
This patch adds more patterns that a reasonable person might write that can be compiled to BZHI.
This adds support for
(~0U >> (32 - b)) & a;
and
a << (32 - b) >> (32 - b);
This was inspired by the code in APInt::clearUnusedBits.
This can pass an index of 32 to the bzhi instruction which a quick test of Haswell hardware shows will not mask any bits. Though the description text in the Intel manual says the "index is saturated to OperandSize-1". The pseudocode in the same manual indicates no bits will be zeroed for this case.
I think this is still missing cases where the subtract portion is an 8-bit operation.
Differential Revision: https://reviews.llvm.org/D32616
llvm-svn: 302549
The comment says to avoid the case where zero bits are shifted into the truncated value,
but the code checks that the shift is smaller than the truncated value instead of the
number of bits added by the sign extension. Fixing this allows a shift by more than the
value size to be introduced, which is undefined behavior, so the shift is capped at the
value size minus one, which has the expected behavior of filling the value with the sign
bit.
Patch by Jacob Young!
Differential Revision: https://reviews.llvm.org/D32285
llvm-svn: 302548
for scalar masked instructions only the lower bit of the mask is relevant. so for constant masks we should either do an unmasked operation or no operation, depending on the value of the lower bit.
This patch handles cases where the lower bit is '1'.
Differential Revision: https://reviews.llvm.org/D32805
llvm-svn: 302546
Now both emitLeadingFence and emitTrailingFence take the instruction
itself, instead of taking IsLoad/IsStore pairs.
Instruction::mayReadFromMemory and Instrucion::mayWriteToMemory are used
for determining those two booleans.
The instruction argument is also useful for later D32763, in
emitTrailingFence. For emitLeadingFence, it seems to have cleaner
interface with the proposed change.
Differential Revision: https://reviews.llvm.org/D32762
llvm-svn: 302539
This caused PR32977.
Original commit message:
> Make it illegal for two Functions to point to the same DISubprogram
>
> As recently discussed on llvm-dev [1], this patch makes it illegal for
> two Functions to point to the same DISubprogram and updates
> FunctionCloner to also clone the debug info of a function to conform
> to the new requirement. To simplify the implementation it also factors
> out the creation of inlineAt locations from the Inliner into a
> general-purpose utility in DILocation.
>
> [1] http://lists.llvm.org/pipermail/llvm-dev/2017-May/112661.html
> <rdar://problem/31926379>
>
> Differential Revision: https://reviews.llvm.org/D32975
llvm-svn: 302533
Summary:
In first order recurrence vectorization, when the previous value is a phi node, we need to
set the insertion point to the first non-phi node.
We can have the previous value being a phi node, due to the generation of new
IVs as part of trunc optimization [1].
[1] https://reviews.llvm.org/rL294967
Reviewers: mssimpso, mkuper
Subscribers: mzolotukhin, llvm-commits
Differential Revision: https://reviews.llvm.org/D32969
llvm-svn: 302532
The modified tests should test the masked intrinsics.
Currently the mask is constant, which with a future patch (https://reviews.llvm.org/D32805) will cause the intrinsics to be replaced with an unmasked version.
This patch changes the constant mask to be a variable one.
llvm-svn: 302529
Using arguments with attribute inalloca creates problems for verification
of machine representation. This attribute instructs the backend that the
argument is prepared in stack prior to CALLSEQ_START..CALLSEQ_END
sequence (see http://llvm.org/docs/InAlloca.htm for details). Frame size
stored in CALLSEQ_START in this case does not count the size of this
argument. However CALLSEQ_END still keeps total frame size, as caller can
be responsible for cleanup of entire frame. So CALLSEQ_START and
CALLSEQ_END keep different frame size and the difference is treated by
MachineVerifier as stack error. Currently there is no way to distinguish
this case from actual errors.
This patch adds additional argument to CALLSEQ_START and its
target-specific counterparts to keep size of stack that is set up prior to
the call frame sequence. This argument allows MachineVerifier to calculate
actual frame size associated with frame setup instruction and correctly
process the case of inalloca arguments.
The changes made by the patch are:
- Frame setup instructions get the second mandatory argument. It
affects all targets that use frame pseudo instructions and touched many
files although the changes are uniform.
- Access to frame properties are implemented using special instructions
rather than calls getOperand(N).getImm(). For X86 and ARM such
replacement was made previously.
- Changes that reflect appearance of additional argument of frame setup
instruction. These involve proper instruction initialization and
methods that access instruction arguments.
- MachineVerifier retrieves frame size using method, which reports sum of
frame parts initialized inside frame instruction pair and outside it.
The patch implements approach proposed by Quentin Colombet in
https://bugs.llvm.org/show_bug.cgi?id=27481#c1.
It fixes 9 tests failed with machine verifier enabled and listed
in PR27481.
Differential Revision: https://reviews.llvm.org/D32394
llvm-svn: 302527
Similar to what we do for vXi8 ASHR(X, 7), use SSE42's PCMPGTQ to splat the sign instead of using the PSRAD+PSHUFD.
Avoiding bitcasts this improves combines that utilize computeNumSignBits, permits memory folding and reduces pipe pressure. Although it does require a second register, given that this is a (cheap) zero register the impact is minimal.
Differential Revision: https://reviews.llvm.org/D32973
llvm-svn: 302525
There is no other explanation about why this only started happening
now, even though it crashes on old code (supposedly reachable from
here).
The only common factor between the failing bots is that they use GCC
(4.9 and 5.3) to compile Clang, while the others use Clang 3.8, but the
failure is while building the tests, as an assertion, on Clang.
Commenting it out for now in hope the bots will go back green, but we
should keep looking for the real cause, and update bugzilla.
llvm-svn: 302520
- This change allows targets to opt-in to using them instead of the log2
shufflevector algorithm.
- The SLP and Loop vectorizers have the common code to do shuffle reductions
factored out into LoopUtils, and now have a unified interface for generating
reductions regardless of the preference of the target. LoopUtils now uses TTI
to determine what kind of reductions the target wants to handle.
- For CodeGen, basic legalization support is added.
Differential Revision: https://reviews.llvm.org/D30086
llvm-svn: 302514
This reverts commit r302461.
It appears to be causing failures compiling gtest with debug info on the
Linux sanitizer bot. I was unable to reproduce the failure locally,
however.
llvm-svn: 302504
Summary:
r284533 added hot and cold section prefixes based on profile
information, to enable grouping of hot/cold functions at link time.
However, it used "cold" as the prefix for cold sections, but gold only
recognizes "unlikely" (which is used by gcc for cold sections).
Therefore, cold sections were not properly being grouped. Switch to
using "unlikely"
Reviewers: danielcdh, davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D32983
llvm-svn: 302502
Summary:
For inalloca functions, this is a very common code pattern:
%argpack = type <{ i32, i32, i32 }>
define void @f(%argpack* inalloca %args) {
entry:
%a = getelementptr inbounds %argpack, %argpack* %args, i32 0, i32 0
%b = getelementptr inbounds %argpack, %argpack* %args, i32 0, i32 1
%c = getelementptr inbounds %argpack, %argpack* %args, i32 0, i32 2
tail call void @llvm.dbg.declare(metadata i32* %a, ... "a")
tail call void @llvm.dbg.declare(metadata i32* %c, ... "b")
tail call void @llvm.dbg.declare(metadata i32* %b, ... "c")
Even though these GEPs can be simplified to a constant offset from EBP
or RSP, we don't do that at -O0, and each GEP is computed into a
register. Registers used to compute argument addresses are typically
spilled and clobbered very quickly after the initial computation, so
live debug variable tracking loses information very quickly if we use
DBG_VALUE instructions.
This change moves processing of dbg.declare between argument lowering
and basic block isel, so that we can ask if an argument has a frame
index or not. If the argument lives in a register as is the case for
byval arguments on some targets, then we don't put it in the side table
and during ISel we emit DBG_VALUE instructions.
Reviewers: aprantl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D32980
llvm-svn: 302483
As recently discussed on llvm-dev [1], this patch makes it illegal for
two Functions to point to the same DISubprogram and updates
FunctionCloner to also clone the debug info of a function to conform
to the new requirement. To simplify the implementation it also factors
out the creation of inlineAt locations from the Inliner into a
general-purpose utility in DILocation.
[1] http://lists.llvm.org/pipermail/llvm-dev/2017-May/112661.html
<rdar://problem/31926379>
Differential Revision: https://reviews.llvm.org/D32975
llvm-svn: 302469
This is another step towards getting rid of dyn_castNotVal,
so we can recommit:
https://reviews.llvm.org/rL300977
As the tests show, we were missing the lshr case for constants
and both ashr/lshr vector splat folds. The ashr case with constant
was being performed inefficiently in 2 steps. It's also possible
there was a latent bug in that case because we can't do that fold
if the constant is positive:
http://rise4fun.com/Alive/Bge
llvm-svn: 302465