With this patch, for this one exact case, we'll generate:
blendps %xmm0, %xmm1, $1
instead of:
insertps %xmm0, %xmm1, $0
If there's a memory operand available for load folding and we're
optimizing for size, we'll still generate the insertps.
The detailed performance data motivation for this may be found in D7866;
in summary, blendps has 2-3x throughput vs. insertps on widely used chips.
Differential Revision: http://reviews.llvm.org/D8332
llvm-svn: 232850
Another case of x86-specific shuffle strength reduction:
avoid generating insert*128 instructions with index 0 because
they are slower than their non-lane-changing blend equivalents.
Shuffle lowering already catches most of these cases, but
the zero vector case and some other paths such as in the
modified test in vector-shuffle-256-v32.ll were getting
through.
Differential Revision: http://reviews.llvm.org/D8366
llvm-svn: 232773
Currently v2i64 vectors shifts (non-equal shift amounts) are scalarized, costing 4 x extract, 2 x x86-shifts and 2 x insert instructions - and it gets even more awkward on 32-bit targets.
This patch separately shifts the vector by both shift amounts and then shuffles the partial results back together, costing 2 x shuffles and 2 x sse-shifts instructions (+ 2 movs on pre-AVX hardware).
Note - this patch only improves the SHL / LSHR logical shifts as only these are supported in SSE hardware.
Differential Revision: http://reviews.llvm.org/D8416
llvm-svn: 232660
This patch fixes a bug in the shuffle lowering logic implemented by function
'lowerV2X128VectorShuffle'.
The are few cases where function 'lowerV2X128VectorShuffle' wrongly expands a
shuffle of two v4X64 vectors into a CONCAT_VECTORS of two EXTRACT_SUBVECTOR
nodes. The problematic expansion only occurs when the shuffle mask M has an
'undef' element at position 2, and M is equivalent to mask <0,1,4,5>.
In that case, the algorithm propagates the wrong vector to one of the two
new EXTRACT_SUBVECTOR nodes.
Example:
;;
define <4 x double> @test(<4 x double> %A, <4 x double> %B) {
entry:
%0 = shufflevector <4 x double> %A, <4 x double> %B, <4 x i32><i32 undef, i32 1, i32 undef, i32 5>
ret <4 x double> %0
}
;;
Before this patch, llc (-mattr=+avx) generated:
vinsertf128 $1, %xmm0, %ymm0, %ymm0
With this patch, llc correctly generates:
vinsertf128 $1, %xmm1, %ymm0, %ymm0
Added test lower-vec-shuffle-bug.ll
Differential Revision: http://reviews.llvm.org/D8259
llvm-svn: 232179
The permps and permd instructions have their operands swapped compared to the
intrinsic definition. Therefore, they do not fall into the INTR_TYPE_2OP
category.
I did not create a new category for those two, as they are the only one AFAICT
in that case.
<rdar://problem/20108262>
llvm-svn: 232085
Part of the folding logic implemented by function 'PerformISDSETCCCombine'
only worked under the assumption that the condition code in input could have
been either SETNE or SETEQ.
Unfortunately that assumption was incorrect, and in some cases the algorithm
ended up incorrectly folding SETCC nodes.
The incorrect folding only affected SETCC dag nodes where:
- one of the operands was a build_vector of all zeroes;
- the other operand was a SIGN_EXTEND from a vector of MVT:i1 elements;
- the condition code was neither SETNE nor SETEQ.
Example:
(setcc (v4i32 (sign_extend v4i1:%A)), (v4i32 VectorOfAllZeroes), setge)
Before this patch, the entire dag node sequence from the example was
incorrectly folded to node %A.
With this patch, the dag node sequence is folded to a
(xor %A, (v4i1 VectorOfAllOnes)).
Added test setcc-combine.ll.
Thanks to Greg Bedwell for spotting this issue.
llvm-svn: 232046
There were cases where the backend computed a wrong permute mask for a VPERM2X128 node.
Example:
\code
define <8 x float> @foo(<8 x float> %a, <8 x float> %b) {
%shuffle = shufflevector <8 x float> %a, <8 x float> %b, <8 x i32> <i32 undef, i32 undef, i32 6, i32 7, i32 undef, i32 undef, i32 6, i32 7>
ret <8 x float> %shuffle
}
\code end
Before this patch, llc (with -mattr=+avx) emitted the following vperm2f128:
vperm2f128 $0, %ymm0, %ymm0, %ymm0 # ymm0 = ymm0[0,1,0,1]
With this patch, llc emits a vperm2f128 with a correct permute mask:
vperm2f128 $17, %ymm0, %ymm0, %ymm0 # ymm0 = ymm0[2,3,2,3]
Differential Revision: http://reviews.llvm.org/D8119
llvm-svn: 231601
We have an increasing number of cases where we are creating commuted shuffle masks - all implementing nearly the same code.
This patch adds a static helper function - ShuffleVectorSDNode::commuteMask() and replaces a number of cases to use it.
Differential Revision: http://reviews.llvm.org/D8139
llvm-svn: 231581
This patch reduces code size for all AVX targets and increases speed for some chips.
SSE 4.1 introduced the useless (see code comments) 2-register form of BLENDV and
only in the packed float/double flavors.
AVX subsequently made the instruction useful by adding a 4-register operand form.
So we just need to paper over the lack of scalar forms of this instruction, complicate
the code to choose float or double forms, and use blendv on scalars since all FP is in
xmm registers anyway.
This gives us an approximately 50% speed up for a blendv microbenchmark sequence
on SandyBridge and Haswell:
blendv : 29.73 cycles/iter
logic : 43.15 cycles/iter
No new test cases with this patch because:
1. fast-isel-select-sse.ll tests the positive side for regular X86 lowering and fast-isel
2. sse-minmax.ll and fp-select-cmp-and.ll confirm that we're not firing for scalar selects without AVX
3. fp-select-cmp-and.ll and logical-load-fold.ll confirm that we're not firing for scalar selects with constants.
http://llvm.org/bugs/show_bug.cgi?id=22483
Differential Revision: http://reviews.llvm.org/D8063
llvm-svn: 231408
Added lowering for ISD::CONCAT_VECTORS and ISD::INSERT_SUBVECTOR for i1 vectors,
it is needed to pass all masked_memop.ll tests for SKX.
llvm-svn: 231371
Summary:
In PNaCl, most atomic instructions have their own @llvm.nacl.atomic.* function, each one, with a few exceptions, represents a consistent behaviour across all NaCl-supported targets. Unfortunately, the atomic RMW operations nand, [u]min, and [u]max aren't directly represented by any such @llvm.nacl.atomic.* function. This patch refines shouldExpandAtomicRMWInIR in TargetLowering so that a future `Le32TargetLowering` class can selectively inform the caller how the target desires the atomic RMW instruction to be expanded (ie via load-linked/store-conditional for ARM/AArch64, via cmpxchg for X86/others?, or not at all for Mips) if at all.
This does not represent a behavioural change and as such no tests were added.
Patch by: Richard Diamond.
Reviewers: jfb
Reviewed By: jfb
Subscribers: jfb, aemerson, t.p.northover, llvm-commits
Differential Revision: http://reviews.llvm.org/D7713
llvm-svn: 231250
This lets us avoid a few copies that are otherwise hard to get rid of.
The way this is done is, the custom-inserter looks at the following
instruction for another CMOV, and replaces both at the same time.
A previous version used a new CMOV2 opcode, but the custom inserter
is expected to be able to return a different basic block anyway, which
means it's OK - though far from ideal - to alter that block's contents.
Explicitly document that, in case it ever makes a difference.
Alternatives welcome!
Follow-up to r231045.
rdar://19767934
Closes http://reviews.llvm.org/D8019
llvm-svn: 231046
Fold and/or of setcc's to double CMOV:
(CMOV F, T, ((cc1 | cc2) != 0)) -> (CMOV (CMOV F, T, cc1), T, cc2)
(CMOV F, T, ((cc1 & cc2) != 0)) -> (CMOV (CMOV T, F, !cc1), F, !cc2)
When we can't use the CMOV instruction, it might increase branch
mispredicts. When we can, or when there is no mispredict, this
improves throughput and reduces register pressure.
These can't be catched by generic combines, because the pattern can
appear when legalizing some instructions (such as fcmp une).
rdar://19767934
http://reviews.llvm.org/D7634
llvm-svn: 231045
With initializer lists there is a really neat idiomatic way to write
this, 'ArrayRef.equals({1, 2, 3, 4, 5})'. Remove the equal method which
always had a hard limit on the number of arguments. I considered
rewriting it with variadic templates but that's not really a good fit
for a function with homogeneous arguments.
'ArrayRef == {1, 2, 3, 4, 5}' would've been even more awesome, but C++11
doesn't allow init lists with binary operators.
llvm-svn: 230907
vectors. This lets us fix the rest of the v16 lowering problems when
pshufb is clearly better.
We might still be able to improve some of the lowerings by enabling the
other combine-based rewriting to fire for non-128-bit vectors, but this
at least should remove any regressions from using the fancy v16i16
lowering strategy.
llvm-svn: 230753
repeated 128-bit lane shuffles of wider vector types and use it to lower
256-bit v16i16 vector shuffles where applicable.
This should let us perfectly lowering the pattern of pshuflw and pshufhw
even for AVX2 256-bit patterns.
I've not added AVX-512 support, but it should be trivial for someone
working on that to wire up.
Note that currently this generates bad, long shuffle chains because we
don't combine 256-bit target shuffles. The subsequent patches will fix
that.
llvm-svn: 230751
a lookup, pass that in rather than use a naked call to getSubtargetImpl.
This involved passing down and around either a TargetMachine or
TargetRegisterInfo. Update all callers/definitions around the targets
and SelectionDAG.
llvm-svn: 230699
blend as legal.
We made the same mistake in two different places. Whenever we are custom
lowering a v32i8 blend we need to check whether we are custom lowering
it only for constant conditions that can be shuffled, or whether we
actually have AVX2 and full dynamic blending support on bytes. Both are
fixed, with comments added to make it clear what is going on and a new
test case.
llvm-svn: 230695
dynamic blends.
This makes it much more clear what is going on. The case we're handling
is that of dynamic conditions, and we're bailing when the nature of the
vector types and subtarget preclude lowering the dynamic condition
vselect as an actual blend.
No functionality changed here, but this will make a subsequent bug-fix
to this code much more clear.
llvm-svn: 230690
formulaic into the top v8i16 lowering routine.
This makes the generalized lowering a completely general and single path
lowering which will allow generalizing it in turn for multiple 128-bit
lanes.
llvm-svn: 230623
Explanation: This function is in TargetLowering because it uses
RegClassForVT which would need to be moved to TargetRegisterInfo
and would necessitate moving isTypeLegal over as well - a massive
change that would just require TargetLowering having a TargetRegisterInfo
class member that it would use.
llvm-svn: 230585
This required plumbing a TargetRegisterInfo through computeRegisterProperties
and into findRepresentativeClass which uses it for register class
iteration. This required passing a subtarget into a few target specific
initializations of TargetLowering.
llvm-svn: 230583
Everyone except R600 was manually passing the length of a static array
at each callsite, calculated in a variety of interesting ways. Far
easier to let ArrayRef handle that.
There should be no functional change, but out of tree targets may have
to tweak their calls as with these examples.
llvm-svn: 230118