We already handle the no-slabs case when checking whether the current slab
is large enough: if no slabs have been allocated, CurPtr and End are both 0.
alignPtr(0), will still be 0, and so "if (Ptr + Size <= End)" fails.
Differential Revision: http://reviews.llvm.org/D4943
llvm-svn: 215841
This reverts commit r215784 / 3f8a26f6fe16cc76c98ab21db2c600bd7defbbaa.
LLD has 3 StringSaver's, one of which takes a lock when saving the
string... Need to investigate more closely.
llvm-svn: 215790
This class is generally useful.
In breaking it out, the primary change is that it has been made
non-virtual. It seems like being abstract led to there being 3 different
(2 in llvm + 1 in clang) concrete implementations which disagreed about
the ownership of the saved strings (see the manual call to free() in the
unittest StrDupSaver; yes this is different from the CommandLine.cpp
StrDupSaver which owns the stored strings; which is different from
Clang's StringSetSaver which just holds a reference to a
std::set<std::string> which owns the strings).
I've identified 2 other places in the
codebase that are open-coding this pattern:
memcpy(Alloc.Allocate<char>(strlen(S)+1), S, strlen(S)+1)
I'll be switching them over. They are
* llvm::sys::Process::GetArgumentVector
* The StringAllocator member of YAMLIO's Input class
This also will allow simplifying Clang's driver.cpp quite a bit.
Let me know if there are any other places that could benefit from
StringSaver. I'm also thinking of adding a saveStringRef member for
getting a stable StringRef.
llvm-svn: 215784
Add header guards to files that were missing guards. Remove #endif comments
as they don't seem common in LLVM (we can easily add them back if we decide
they're useful)
Changes made by clang-tidy with minor tweaks.
llvm-svn: 215558
It's not clear what the semantics of a self-move should be. The
consensus appears to be that a self-move should leave the object in a
moved-from state, which is what our existing move assignment operator
does.
However, the MSVC 2013 STL will perform self-moves in some cases. In
particular, when doing a std::stable_sort of an already sorted APSInt
vector of an appropriate size, one of the merge steps will self-move
half of the elements.
We don't notice this when building with MSVC, because MSVC will not
synthesize the move assignment operator for APSInt. Presumably MSVC
does this because APInt, the base class, has user-declared special
members that implicitly delete move special members. Instead, MSVC
selects the copy-assign operator, which defends against self-assignment.
Clang, on the other hand, selects the move-assign operator, and we get
garbage APInts.
llvm-svn: 215478
Remove the MinGW32 and Cygwin types from the OSType enumeration. These values
are represented via environments of Windows. It is a source of confusion and
needlessly clutters the code. The cost of doing this is that we must sink the
check for them into the normalization code path along with the spelling.
Addresses PR20592.
llvm-svn: 215303
be deleted. This will be reapplied as soon as possible and before
the 3.6 branch date at any rate.
Approved by Jim Grosbach, Lang Hames, Rafael Espindola.
This reverts commits r215111, 215115, 215116, 215117, 215136.
llvm-svn: 215154
I am sure we will be finding bits and pieces of dead code for years to
come, but this is a good start.
Thanks to Lang Hames for making MCJIT a good replacement!
llvm-svn: 215111
path::const_iterator claims that it's a bidirectional iterator, but it
doesn't satisfy all of the contracts for a bidirectional iterator.
For example, n3376 24.2.5 p6 says "If a and b are both dereferenceable,
then a == b if and only if *a and *b are bound to the same object",
but this doesn't work with how we stash and recreate Components.
This means that our use of reverse_iterator on this type is invalid
and leads to many of the valgrind errors we're hitting, as explained
by Tilmann Scheller here:
http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20140728/228654.html
Instead, we admit that path::const_iterator is only an input_iterator,
and implement a second input_iterator for path::reverse_iterator (by
changing const_iterator::operator-- to reverse_iterator::operator++).
All of the uses of this just traverse once over the path in one
direction or the other anyway.
llvm-svn: 214737
`BlockAddress`es are interesting in that they can reference basic blocks
from *outside* the block's function. Since basic blocks are not global
values, this presents particular challenges for lazy parsing.
One corner case was found in PR11677 and fixed in r147425. In that
case, a global variable references a block address. It's necessary to
load the relevant function to resolve the forward reference before doing
anything with the module.
By inspection, I found (and have fixed here) two other cases:
- An instruction from one function references a block address from
another function, and only the first function is lazily loaded.
I fixed this the same way as PR11677: by eagerly loading the
referenced function.
- A function whose block address is taken is dematerialized, leaving
invalid references to it.
I fixed this by refusing to dematerialize functions whose block
addresses are taken (if you have to load it, you can't unload it).
llvm-svn: 214559
Rewrite the single unit test in `BitReaderTest` so that it's easier to
add more tests.
- Parse from an assembly string rather than using API.
- Use more helper functions.
- Use a separate context for the module on the other side.
Aside from relying on the assembly parser, there's no functionality
change intended.
llvm-svn: 214556
DITypeArray is an array of DITypeRef, at its creation, we will create
DITypeRef (i.e use the identifier if the type node has an identifier).
This is the last patch to unique the type array of a subroutine type.
rdar://17628609
llvm-svn: 214132
checking whether the ArrayRef is equal to an explicit list of arguments.
This is particularly easy to implement even without variadic templates
because ArrayRef happens to be homogeneously typed. As a consequence we
can use a "clever" wrapper type and default arguments to capture in
a single method many arguments as well as *how many* arguments the user
specified.
Thanks to Dave Blaikie for helping me pull together this little helper.
Suggestions for how to improve or generalize it are of course welcome.
I'll be using it immediately in my follow-up patch. =D
llvm-svn: 214041
In order to enable the preservation of noalias function parameter information
after inlining, and the representation of block-level __restrict__ pointer
information (etc.), additional kinds of aliasing metadata will be introduced.
This metadata needs to be carried around in AliasAnalysis::Location objects
(and MMOs at the SDAG level), and so we need to generalize the current scheme
(which is hard-coded to just one TBAA MDNode*).
This commit introduces only the necessary refactoring to allow for the
introduction of other aliasing metadata types, but does not actually introduce
any (that will come in a follow-up commit). What it does introduce is a new
AAMDNodes structure to hold all of the aliasing metadata nodes associated with
a particular memory-accessing instruction, and uses that structure instead of
the raw MDNode* in AliasAnalysis::Location, etc.
No functionality change intended.
llvm-svn: 213859
Add `Value::sortUseList()`, templated on the comparison function to use.
The sort is an iterative merge sort that uses a binomial vector of
already-merged lists to limit the size overhead to `O(1)`.
This is part of PR5680.
llvm-svn: 213824
This re-enables some #if 0'd code (since 2010) in the Path unittests
and makes at least a weak effort at testing sys::path's rbegin/rend.
This change was inspired by some test failures near uses of rbegin and
rend here:
http://lab.llvm.org:8011/builders/clang-x86_64-linux-vg/builds/3209
The "valgrind was whining" comment looked promising in terms of a
simpler to debug case of the same errors. However, it appears that the
valgrind complaints the comment was referring to are distinct from the
ones in the frontend, since this updated test isn't complaining for me
under valgrind.
In any case, the disabled tests weren't helping anybody.
llvm-svn: 213125
Add a `MapVector::remove_if()` that erases items in bulk in linear time,
as opposed to quadratic time for repeated calls to `MapVector::erase()`.
llvm-svn: 213090
Actually update the changed indexes in the map portion of `MapVector`
when erasing from the middle. Add a unit test that checks for this.
Note that `MapVector::erase()` is a linear time operation (it was and
still is). I'll commit a new method in a moment called
`MapVector::remove_if()` that deletes multiple entries in linear time,
which should be slightly less painful.
llvm-svn: 213084
Until now, attempting to create an alias of a required option would
complain if the user supplied the alias, because the required option
didn't have a value. Similarly, if you said the alias was required,
then using the base option would complain that the alias wasn't
supplied. Lastly, if you put required on both, *neither* option would
work.
By changning alias to overload addOccurrence and setting cl::Required
on the original option, we can get this to behave in a more useful
way. I've also added a test and updated a user that was getting this
wrong.
llvm-svn: 212986
Turn llvm::SpecialCaseList into a simple class that parses text files in
a specified format and knows nothing about LLVM IR. Move this class into
LLVMSupport library. Implement two users of this class:
* DFSanABIList in DFSan instrumentation pass.
* SanitizerBlacklist in Clang CodeGen library.
The latter will be modified to use actual source-level information from frontend
(source file names) instead of unstable LLVM IR things (LLVM Module identifier).
Remove dependency edge from ClangCodeGen/ClangDriver to LLVMTransformUtils.
No functionality change.
llvm-svn: 212643
The slice(N, M) interface is powerful but not concise when wanting to
drop a few elements off of an ArrayRef, fix this by adding a drop_back
method.
llvm-svn: 212370
Now that we have a lib/MC/MCAnalysis, the dependency was there just because
of two helper classes. Move the two over to MC.
This will allow IRObjectFile to parse inline assembly.
llvm-svn: 212248
The new library is 150KB on a Release+Asserts build, so it is quiet a bit of
code that regular users of MC don't need to link with now.
llvm-svn: 212209
string_ostream is a safe and efficient string builder that combines opaque
stack storage with a built-in ostream interface.
small_string_ostream<bytes> additionally permits an explicit stack storage size
other than the default 128 bytes to be provided. Beyond that, storage is
transferred to the heap.
This convenient class can be used in most places an
std::string+raw_string_ostream pair or SmallString<>+raw_svector_ostream pair
would previously have been used, in order to guarantee consistent access
without byte truncation.
The patch also converts much of LLVM to use the new facility. These changes
include several probable bug fixes for truncated output, a programming error
that's no longer possible with the new interface.
llvm-svn: 211749
Certain versions of GCC (~4.7) couldn't handle the SFINAE on access
control, but with "= delete" (hidden behind a macro for portability)
this issue is worked around/addressed.
Patch by Agustín Bergé
llvm-svn: 211525
This reverts commit 1f502bd9d7d2c1f98ad93a09ffe435e11a95aedd, due to
GCC / MinGW's lack of support for C++11 threading.
It's possible this will go back in after we come up with a
reasonable solution.
llvm-svn: 211401
Start extracting helper functions out of -block-freq's `UnsignedFloat`
into `Support/ScaledNumber.h` with the eventual goal of moving and
renaming the class to `ScaledNumber`.
The bike shed about names is still being painted, but I'm going with
this for now.
llvm-svn: 211333
After a number of previous small iterations, the functions
llvm_start_multithreaded() and llvm_stop_multithreaded() have
been reduced essentially to no-ops. This change removes them
entirely.
Reviewed by: rnk, dblaikie
Differential Revision: http://reviews.llvm.org/D4216
llvm-svn: 211287
This change has a bit of a trickle down effect due to the fact that
there are a number of derived implementations of ExecutionEngine,
and that the mutex is not tightly encapsulated so is used by other
classes directly.
Reviewed by: rnk
Differential Revision: http://reviews.llvm.org/D4196
llvm-svn: 211214
This enables static polymorphism of the mutex type, which is
necessary in order to replace the standard mutex implementation
with a different type.
llvm-svn: 211080
While std::error_code itself seems to work OK in all platforms, there
are few annoying differences with regards to the std::errc enumeration.
This patch adds a simple llvm enumeration, which will hopefully avoid build
breakages in other platforms and surprises as we get more uses of
std::error_code.
llvm-svn: 210920
The idea of this patch is to turn llvm/Support/system_error.h into a
transitional header that just brings in the erorr_code api to the llvm
namespace. I will remove it shortly afterwards.
The cases where the general idea needed some tweaking:
* std::errc is a namespace in msvc, so we cannot use "using std::errc". I could
add an #ifdef, but there were not that many uses, so I just added std:: to
them in this patch.
* Template specialization had to be moved to the std namespace in this
patch set already.
* The msvc implementation of default_error_condition doesn't seem to
provide the same transformations as we need. Not too surprising since
the standard doesn't actually say what "equivalent" means. I fixed the
problem by keeping our old mapping and using it at error_code
construction time.
Despite these shortcomings I think this is still a good thing. Some reasons:
* The different implementations of system_error might improve over time.
* It removes 925 lines of code from llvm already.
* It removes 6313 bytes from the text segment of the clang binary when
it is built with gcc and 2816 bytes when building with clang and
libstdc++.
llvm-svn: 210687
MSVC doesn't seem to provide any is_error_code_enum enumeration for the
windows errors.
Fortunately very few places in llvm have to handle raw windows errors, so
we can just construct the corresponding error_code directly.
llvm-svn: 210631
Unfortunately there's no way to elegantly do this with pre-canned
algorithms. Using a generating iterator doesn't work because you default
construct for each element, then move construct into the actual slot
(bad for copy but non-movable types, and a little unneeded overhead even
in the move-only case), so just write it out manually.
This solution isn't exception safe (if one of the element's ctors calls
we don't fall back, destroy the constructed elements, and throw on -
which std::uninitialized_fill does do) but SmallVector (and LLVM) isn't
exception safe anyway.
llvm-svn: 210495
To test cases that involve actual repetition (> 1 elements), at least
one element before the insertion point, and some elements of the
original range that still fit in that range space after insertion.
Actually we need coverage for the inverse case too (where no elements
after the insertion point fit into the previously allocated space), but
this'll do for now, and I might end up rewriting bits of SmallVector to
avoid that special case anyway.
llvm-svn: 210436
Specifically this caused inserting an element from a SmallVector into
itself when such an insertion would cause a reallocation. We have code
to handle this for non-reallocating cases, but it's not robust against
reallocation.
llvm-svn: 210430
(& because it makes it easier to test, this also improves
correctness/performance slightly by moving the last element in an insert
operation, rather than copying it)
llvm-svn: 210429
Because we don't have a separate negate( ) function, 0 - NaN does double-duty as the IEEE-754 negate( ) operation, which (unlike most FP ops) *does* attach semantic meaning to the signbit of NaN.
llvm-svn: 210428
This would cause the last element in a range to be in a moved-from state
after an insert at a non-end position, losing that value entirely in the
process.
Side note: move_backward is subtle. It copies [A, B) to C-1 and down.
(the fact that it decrements both the second and third iterators before
the first movement is the subtle part... kind of surprising, anyway)
llvm-svn: 210426