Summary:
A true or false result is expected from a comparison, but it seems the possibility of undef was overlooked, which could lead to a failed assert. This is fixed by this patch by bailing out if we encounter undef.
The bug is old and the assert has been there since the end of 2014, so it seems this is unusual enough to forego optimization.
Patch by: JesperAntonsson
Reviewers: spatel, eeckstein, hans
Reviewed By: hans
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D40639
llvm-svn: 319537
Summary:
This wrapper checks if there is at least one non-zero weight before
setting the metadata.
Reviewers: davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D39872
llvm-svn: 317845
Merging conditional stores tries to check to see if the code is if convertible after the store is moved. But the store hasn't been moved yet so its being counted against the threshold.
The patch adds 1 to the threshold comparison to make sure we don't count the store. I've adjusted a test to use a lower threshold to ensure we still do that conversion with the lower threshold.
Differential Revision: https://reviews.llvm.org/D39570
llvm-svn: 317368
Summary:
SpeculativelyExecuteBB can flatten the CFG by doing
speculative execution followed by a select instruction.
When the speculatively executed BB contained dbg intrinsics
the result could be a little bit weird, since those dbg
intrinsics were inserted before the select in the flattened
CFG. So when single stepping in the debugger, printing the
value of the variable referenced in the dbg intrinsic, it
could happen that it looked like the variable had values
that never actually were assigned to the variable.
This patch simply discards all dbg intrinsics that were found
in the speculatively executed BB.
Reviewers: aprantl, chandlerc, craig.topper
Reviewed By: aprantl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D39494
llvm-svn: 317198
A future commit will change how some of the value names in the IR are generated which causes these tests to break in their current form. The script generates checks with regular expressions so it should be immune.
llvm-svn: 317023
This is no-functional-change-intended.
This is repackaging the functionality of D30333 (defer switch-to-lookup-tables) and
D35411 (defer folding unconditional branches) with pass parameters rather than a named
"latesimplifycfg" pass. Now that we have individual options to control the functionality,
we could decouple when these fire (but that's an independent patch if desired).
The next planned step would be to add another option bit to disable the sinking transform
mentioned in D38566. This should also make it clear that the new pass manager needs to
be updated to limit simplifycfg in the same way as the old pass manager.
Differential Revision: https://reviews.llvm.org/D38631
llvm-svn: 316835
As discussed in D39011:
https://reviews.llvm.org/D39011
...replacing constants with a variable is inverting the transform done
by other IR passes, so we definitely don't want to do this early.
In fact, it's questionable whether this transform belongs in SimplifyCFG
at all. I'll look at moving this to codegen as a follow-up step.
llvm-svn: 316298
The missed canonicalization/optimization in the motivating test from PR34471 leads to very different codegen:
int switcher(int x) {
switch(x) {
case 17: return 17;
case 19: return 19;
case 42: return 42;
default: break;
}
return 0;
}
int comparator(int x) {
if (x == 17) return 17;
if (x == 19) return 19;
if (x == 42) return 42;
return 0;
}
For the first example, we use a bit-test optimization to avoid a series of compare-and-branch:
https://godbolt.org/g/BivDsw
Differential Revision: https://reviews.llvm.org/D39011
llvm-svn: 316293
This patch lets the llvm tools handle the new HVX target features that
are added by frontend (clang). The target-features are of the form
"hvx-length64b" for 64 Byte HVX mode, "hvx-length128b" for 128 Byte mode HVX.
"hvx-double" is an alias to "hvx-length128b" and is soon will be deprecated.
The hvx version target feature is upgated form "+hvx" to "+hvxv{version_number}.
Eg: "+hvxv62"
For the correct HVX code generation, the user must use the following
target features.
For 64B mode: "+hvxv62" "+hvx-length64b"
For 128B mode: "+hvxv62" "+hvx-length128b"
Clang picks a default length if none is specified. If for some reason,
no hvx-length is specified to llvm, the compilation will bail out.
There is a corresponding clang patch.
Differential Revision: https://reviews.llvm.org/D38851
llvm-svn: 316101
Significantly reduces performancei (~30%) of gipfeli
(https://github.com/google/gipfeli)
I have not yet managed to reproduce this regression with the open-source
version of the benchmark on github, but will work with others to get a
reproducer to you later today.
llvm-svn: 315680
Recommitting r314517 with the fix for handling ConstantExpr.
Original commit message:
Currently, getGEPCost() returns TCC_FREE whenever a GEP is a legal addressing
mode in the target. However, since it doesn't check its actual users, it will
return FREE even in cases where the GEP cannot be folded away as a part of
actual addressing mode. For example, if an user of the GEP is a call
instruction taking the GEP as a parameter, then the GEP may not be folded in
isel.
llvm-svn: 314923
Summary: If the merged instruction is call instruction, we need to set the scope to the closes common scope between 2 locations, otherwise it will cause trouble when the call is getting inlined.
Reviewers: dblaikie, aprantl
Reviewed By: dblaikie, aprantl
Subscribers: llvm-commits, sanjoy
Differential Revision: https://reviews.llvm.org/D37877
llvm-svn: 314694
This was intended to be no-functional-change, but it's not - there's a test diff.
So I thought I should stop here and post it as-is to see if this looks like what was expected
based on the discussion in PR34603:
https://bugs.llvm.org/show_bug.cgi?id=34603
Notes:
1. The test improvement occurs because the existing 'LateSimplifyCFG' marker is not carried
through the recursive calls to 'SimplifyCFG()->SimplifyCFGOpt().run()->SimplifyCFG()'.
The parameter isn't passed down, so we pick up the default value from the function signature
after the first level. I assumed that was a bug, so I've passed 'Options' down in all of the
'SimplifyCFG' calls.
2. I split 'LateSimplifyCFG' into 2 bits: ConvertSwitchToLookupTable and KeepCanonicalLoops.
This would theoretically allow us to differentiate the transforms controlled by those params
independently.
3. We could stash the optional AssumptionCache pointer and 'LoopHeaders' pointer in the struct too.
I just stopped here to minimize the diffs.
4. Similarly, I stopped short of messing with the pass manager layer. I have another question that
could wait for the follow-up: why is the new pass manager creating the pass with LateSimplifyCFG
set to true no matter where in the pipeline it's creating SimplifyCFG passes?
// Create an early function pass manager to cleanup the output of the
// frontend.
EarlyFPM.addPass(SimplifyCFGPass());
-->
/// \brief Construct a pass with the default thresholds
/// and switch optimizations.
SimplifyCFGPass::SimplifyCFGPass()
: BonusInstThreshold(UserBonusInstThreshold),
LateSimplifyCFG(true) {} <-- switches get converted to lookup tables and loops may not be in canonical form
If this is unintended, then it's possible that the current behavior of dropping the 'LateSimplifyCFG'
setting via recursion was masking this bug.
Differential Revision: https://reviews.llvm.org/D38138
llvm-svn: 314308
I noticed this inefficiency while investigating PR34603:
https://bugs.llvm.org/show_bug.cgi?id=34603
This fix will likely push another bug (we don't maintain state of 'LateSimplifyCFG')
into hiding, but I'll try to clean that up with a follow-up patch anyway.
llvm-svn: 313829
Implement the isTruncateFree hooks, lifted from AArch64, that are
used by TargetTransformInfo. This allows simplifycfg to reduce the
test case into a single basic block.
Differential Revision: https://reviews.llvm.org/D37516
llvm-svn: 313533
Previously this would sporadically crash as TargetType
was never initialized. We special-case the single-operand
case returning earlier and trying to mimic the behaviour of
isLegalAddressingMode as closely as possible.
Differential Revision: https://reviews.llvm.org/D37277
llvm-svn: 312357
This change simplifies code that has to deal with
DIGlobalVariableExpression and mirrors how we treat DIExpressions in
debug info intrinsics. Before this change there were two ways of
representing empty expressions on globals, a nullptr and an empty
!DIExpression().
If someone needs to upgrade out-of-tree testcases:
perl -pi -e 's/(!DIGlobalVariableExpression\(var: ![0-9]*)\)/\1, expr: !DIExpression())/g' <MYTEST.ll>
will catch 95%.
llvm-svn: 312144
Summary:
If SimplifyCFG pass is able to merge conditional stores into single one,
it loses the alignment. This may lead to incorrect codegen. Patch
sets the alignment of the new instruction if it is set in the original
one.
Reviewers: jmolloy
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D36841
llvm-svn: 312030
Summary: When we move then-else code to if, we need to merge its debug info, otherwise the hoisted instruction may have inaccurate debug info attached.
Reviewers: aprantl, probinson, dblaikie, echristo, loladiro
Reviewed By: aprantl
Subscribers: sanjoy, llvm-commits
Differential Revision: https://reviews.llvm.org/D36778
llvm-svn: 310985
The recently improved support for `icmp` in ValueTracking
(r307304) exposes the fact that `isImplied` condition doesn't
really bail out if we hit the recursion limit (and calls
`computeKnownBits` which increases the depth and asserts).
Differential Revision: https://reviews.llvm.org/D36512
llvm-svn: 310481
move test/Transforms/SimplifyCFG/disable-lookup-table.ll into test/Transforms/SimplifyCFG/X86/disable-lookup-table.ll to avoid test failure when X86 backend is not enabled
llvm-svn: 309487
There is no situation where this rarely-used argument cannot be
substituted with a DIExpression and removing it allows us to simplify
the DWARF backend. Note that this patch does not yet remove any of
the newly dead code.
rdar://problem/33580047
Differential Revision: https://reviews.llvm.org/D35951
llvm-svn: 309426
Summary:
When simplifying unconditional branches from empty blocks, we pre-test if the
BB belongs to a set of loop headers and keep the block to prevent passes from
destroying canonical loop structure. However, the current algorithm fails if
the destination of the branch is a loop header. Especially when such a loop's
latch block is folded into loop header it results in additional backedges and
LoopSimplify turns it into a nested loop which prevent later optimizations
from being applied (e.g., loop unrolling and loop interleaving).
This patch augments the existing algorithm by further checking if the
destination of the branch belongs to a set of loop headers and defer
eliminating it if yes to LateSimplifyCFG.
Fixes PR33605: https://bugs.llvm.org/show_bug.cgi?id=33605
Reviewers: efriedma, mcrosier, pacxx, hsung, davidxl
Reviewed By: efriedma
Subscribers: ashutosh.nema, gberry, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D35411
llvm-svn: 308422
This patch adds support for handling some forms of ands and ors in
ValueTracking's isImpliedCondition API.
PR33611
https://reviews.llvm.org/D34901
llvm-svn: 307304
Summary:
`Instruction::Switch`: only first operand can be set to a non-constant value.
`Instruction::InsertValue` both the first and the second operand can be set to a non-constant value.
`Instruction::Alloca` return true for non-static allocation.
Reviewers: efriedma
Reviewed By: efriedma
Subscribers: srhines, pirama, llvm-commits
Differential Revision: https://reviews.llvm.org/D34905
llvm-svn: 307294
The llvm flag "-hexagon-emit-lookup-tables" guards the generation
of lookup table generated from a switch statement.
Differential Revision: https://reviews.llvm.org/D34819
llvm-svn: 306877
This patch appends the name of the function to the switch generated lookup
table. This will ease the visual debugging in identifying the function the table
is generated from.
Differential Revision: https://reviews.llvm.org/D34817
llvm-svn: 306867
Currently we choose PostBB as the single successor of QFB, but its possible that QTB's single successor is QFB which would make QFB the correct choice.
Differential Revision: https://reviews.llvm.org/D32323
llvm-svn: 300992
One potential way to make InstCombine (very slightly?) faster is to recycle instructions
when possible instead of creating new ones. It's not explicitly stated AFAIK, but we don't
consider this an "InstSimplify". We could, however, make a new layer to house transforms
like this if that makes InstCombine more manageable (just throwing out an idea; not sure
how much opportunity is actually here).
Differential Revision: https://reviews.llvm.org/D31863
llvm-svn: 300067
The first variant contains all current transformations except
transforming switches into lookup tables. The second variant
contains all current transformations.
The switch-to-lookup-table conversion results in code that is more
difficult to analyze and optimize by other passes. Most importantly,
it can inhibit Dead Code Elimination. As such it is often beneficial to
only apply this transformation very late. A common example is inlining,
which can often result in range restrictions for the switch expression.
Changes in execution time according to LNT:
SingleSource/Benchmarks/Misc/fp-convert +3.03%
MultiSource/Benchmarks/ASC_Sequoia/CrystalMk/CrystalMk -11.20%
MultiSource/Benchmarks/Olden/perimeter/perimeter -10.43%
and a couple of smaller changes. For perimeter it also results 2.6%
a smaller binary.
Differential Revision: https://reviews.llvm.org/D30333
llvm-svn: 298799