These are all benign races and only visible in !NDEBUG. tsan complains
about it, but a simple atomic bool is sufficient to make it happy.
llvm-svn: 335823
Summary:
After r335018, the static tables are guaranteed sorted by the EVEX opcode to convert. We can use this to do a binary search and remove the need for any secondary data structures.
Right now one table is 736 entries and the other is 482 entries. It might make sense to merge the two tables as a follow up. The effort it takes to select the table is probably similar to the extra binary search step it would require for a larger table.
I haven't done any measurements to see if this has any effect on compile time, but I don't imagine that EVEX->VEX conversion is a place we spend a lot of time.
Reviewers: RKSimon, spatel, chandlerc
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D48312
llvm-svn: 335092
The code was previously checking the L2 and L flag on 3 separate lines, treating the combination as an encoding. Instead its better to think of the L2 bit as being something that can't be done with VEX and early returning. Then we just need to check the L bit.
llvm-svn: 335015
X86InstComments.h is used by tools that only have the MC layer. We shouldn't be importing a file from CodeGen into this.
X86InstrInfo.h isn't a great place, but I couldn't find a better one.
llvm-svn: 327202
This will enable us to prefer VALIGND/Q during shuffle lowering in order to get the extended register encoding space when BWI isn't available. But if we end up not using the extended registers we can switch VPALIGNR for the shorter VEX encoding.
Differential Revision: https://reviews.llvm.org/D39401
llvm-svn: 317122
X86EvexToVex machine instruction pass compresses EVEX encoded instructions by replacing them with their identical VEX encoded instructions when possible.
It uses manually supported 2 large tables that map the EVEX instructions to their VEX ideticals.
This TableGen backend replaces the tables by automatically generating them.
Differential Revision: https://reviews.llvm.org/D30451
llvm-svn: 297127
There are cases of AVX-512 instructions that have two possible encodings. This is the case with instructions that use vector registers with low indexes of 0 - 15 and do not use the zmm registers or the mask k registers.
The EVEX encoding prefix requires 4 bytes whereas the VEX prefix can take only up to 3 bytes. Consequently, using the VEX encoding for these instructions results in a code size reduction of ~2 bytes even though it is compiled with the AVX-512 features enabled.
Reviewers: Craig Topper, Zvi Rackoover, Elena Demikhovsky
Differential Revision: https://reviews.llvm.org/D27901
llvm-svn: 290663