This is 1 step towards correcting our usage of fast-math-flags when applied on an fcmp.
In this case, we are checking for 'nnan' on the fcmp itself rather than the operand of
the fcmp. But I'm leaving that clause in until we're more confident that we can stop
relying on fcmp's FMF.
By using the more general "isKnownNeverNaN()", we gain a simplification shown on the
tests with 'uitofp' regardless of the FMF on the fcmp (uitofp never produces a NaN).
On the tests with 'fabs', we are now relying on the FMF for the call fabs instruction
in addition to the FMF on the fcmp.
I'll update the 'ult' case below here as a follow-up assuming no problems here.
Differential Revision: https://reviews.llvm.org/D62979
llvm-svn: 362879
Patch which introduces a target-independent framework for generating
hardware loops at the IR level. Most of the code has been taken from
PowerPC CTRLoops and PowerPC has been ported over to use this generic
pass. The target dependent parts have been moved into
TargetTransformInfo, via isHardwareLoopProfitable, with
HardwareLoopInfo introduced to transfer information from the backend.
Three generic intrinsics have been introduced:
- void @llvm.set_loop_iterations
Takes as a single operand, the number of iterations to be executed.
- i1 @llvm.loop_decrement(anyint)
Takes the maximum number of elements processed in an iteration of
the loop body and subtracts this from the total count. Returns
false when the loop should exit.
- anyint @llvm.loop_decrement_reg(anyint, anyint)
Takes the number of elements remaining to be processed as well as
the maximum numbe of elements processed in an iteration of the loop
body. Returns the updated number of elements remaining.
llvm-svn: 362774
This adds support for unary fneg based on the implementation of BinaryOperator without the soft float FP cost.
Previously we would just delegate to visitUnaryInstruction. I think the only real change is that we will pass the FastMath flags to SimplifyFNeg now.
Differential Revision: https://reviews.llvm.org/D62699
llvm-svn: 362732
Summary: Dependence Analysis performs static checks to confirm validity
of delinearization. These checks often fail for 64-bit targets due to
type conversions and integer wrapping that prevent simplification of the
SCEV expressions. These checks would also fail at compile-time if the
lower bound of the loops are compile-time unknown.
For example:
void foo(int n, int m, int a[][m]) {
for (int i = 0; i < n; ++i)
for (int j = 0; j < m; ++j) {
a[i][j] = a[i+1][j-2];
}
}
opt -mem2reg -instcombine -indvars -loop-simplify -loop-rotate -inline
-pass-remarks=.* -debug-pass=Arguments
-da-permissive-validity-checks=false k3.ll -analyze -da
will produce the following by default:
da analyze - anti [* *|<]!
but will produce the following expected dependence vector if the
validity checks are disabled:
da analyze - consistent anti [1 -2]!
This revision will introduce a debug option that will leave the validity
checks in place by default, but allow them to be turned off. New tests
are added for cases where it cannot be proven at compile-time that the
individual subscripts stay in-bound with respect to a particular
dimension of an array. These tests enable the option to provide user
guarantee that the subscripts do not over/under-flow into other
dimensions, thereby producing more accurate dependence vectors.
For prior discussion on this topic, leading to this change, please see
the following thread:
http://lists.llvm.org/pipermail/llvm-dev/2019-May/132372.html
Reviewers: Meinersbur, jdoerfert, kbarton, dmgreen, fhahn
Reviewed By: Meinersbur, jdoerfert, dmgreen
Subscribers: fhahn, hiraditya, javed.absar, llvm-commits, Whitney,
etiotto
Tag: LLVM
Differential Revision: https://reviews.llvm.org/D62610
llvm-svn: 362711
If the given SCEVExpr has no (un)signed flags attached to it, transfer
these to the resulting instruction or use them to find an existing
instruction.
Differential Revision: https://reviews.llvm.org/D61934
llvm-svn: 362687
This patch allows current users of Value::stripPointerCasts() to force
the result of the function to have the same representation as the value
it was called on. This is useful in various cases, e.g., (non-)null
checks.
In this patch only a single call site was adjusted to fix an existing
misuse that would cause nonnull where they may be wrong. Uses in
attribute deduction and other areas, e.g., D60047, are to be expected.
For a discussion on this topic, please see [0].
[0] http://lists.llvm.org/pipermail/llvm-dev/2018-December/128423.html
Reviewers: hfinkel, arsenm, reames
Subscribers: wdng, hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61607
llvm-svn: 362545
The underlying ConstantRange functionality has been added in D60952,
D61207 and D61238, this just exposes it for LVI.
I'm switching the code from using a whitelist to a blacklist, as
we're down to one unsupported operation here (xor) and writing it
this way seems more obvious :)
Differential Revision: https://reviews.llvm.org/D62822
llvm-svn: 362519
This looks like an oversight as all the other binary operators are present.
Accidentally noticed while auditing places that need FNeg handling.
No test because as noted in the review it would be contrived and amount to "don't crash"
Differential Revision: https://reviews.llvm.org/D62790
llvm-svn: 362441
Summary: Fneg can be implemented with an xor rather than a function call so we don't need to add the function call overhead. This was pointed out in D62699
Reviewers: efriedma, cameron.mcinally
Reviewed By: efriedma
Subscribers: javed.absar, eraman, hiraditya, haicheng, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62747
llvm-svn: 362304
When the object size argument is -1, no checking can be done, so calling the
_chk variant is unnecessary. We already did this for a bunch of these
functions.
rdar://50797197
Differential revision: https://reviews.llvm.org/D62358
llvm-svn: 362272
These can take a significant amount of time in some builds.
Suggested by Andrea Di Biagio.
Differential Revision: https://reviews.llvm.org/D62666
llvm-svn: 362219
In order to fold an always overflowing signed saturating add/sub,
we need to know in which direction the always overflow occurs.
This patch splits up AlwaysOverflows into AlwaysOverflowsLow and
AlwaysOverflowsHigh to pass through this information (but it is
not used yet).
Differential Revision: https://reviews.llvm.org/D62463
llvm-svn: 361858
Replace "unary operator" with "unary instruction" in visitUnaryInstruction since
we now have a UnaryOperator class which might needs its own visit function.
Fix a copy/paste in visitCastInst that appears to have been copied from
visitPtrToInt.
llvm-svn: 361794
Summary:
This reuses the getArithmeticInstrCost, but passes dummy values of the second
operand flags.
The X86 costs are wrong and can be improved in a follow up. I just wanted to
stop it from reporting an unknown cost first.
Reviewers: RKSimon, spatel, andrew.w.kaylor, cameron.mcinally
Reviewed By: spatel
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62444
llvm-svn: 361788
Summary:
for.outer:
br for.inner
for.inner:
LI <loop invariant load instruction>
for.inner.latch:
br for.inner, for.outer.latch
for.outer.latch:
br for.outer, for.outer.exit
LI is a loop invariant load instruction that post dominate for.outer, so LI should be able to move out of the loop nest. However, there is a bug in allLoopPathsLeadToBlock().
Current algorithm of allLoopPathsLeadToBlock()
1. get all the transitive predecessors of the basic block LI belongs to (for.inner) ==> for.outer, for.inner.latch
2. if any successors of any of the predecessors are not for.inner or for.inner's predecessors, then return false
3. return true
Although for.inner.latch is for.inner's predecessor, but for.inner dominates for.inner.latch, which means if for.inner.latch is ever executed, for.inner should be as well. It should not return false for cases like this.
Author: Whitney (committed by xingxue)
Reviewers: kbarton, jdoerfert, Meinersbur, hfinkel, fhahn
Reviewed By: jdoerfert
Subscribers: hiraditya, jsji, llvm-commits, etiotto, bmahjour
Tags: #LLVM
Differential Revision: https://reviews.llvm.org/D62418
llvm-svn: 361762
The implementation in ValueTracking and ConstantRange are equally
powerful, reuse the one in ConstantRange, which will make this easier
to extend.
llvm-svn: 361723
Adds support for the uadd.sat family of intrinsics in LVI, based on
ConstantRange methods from D60946.
Differential Revision: https://reviews.llvm.org/D62447
llvm-svn: 361703
In LVI, calculate the range of extractvalue(op.with.overflow(%x, %y), 0)
as the range of op(%x, %y). This is mainly useful in conjunction with
D60650: If the result of the operation is extracted in a branch guarded
against overflow, then the value of %x will be appropriately constrained
and the result range of the operation will be calculated taking that
into account.
Differential Revision: https://reviews.llvm.org/D60656
llvm-svn: 361693
This was part of InstCombine, but it's better placed in
InstSimplify. InstCombine also had an unreachable but weaker
fold for insertelement with undef index, so that is deleted.
llvm-svn: 361559
Summary:
This PR extends the loop object with more utilities to get loop bounds, step, induction variable, and guard branch. There already exists passes which try to obtain the loop induction variable in their own pass, e.g. loop interchange. It would be useful to have a common area to get these information. Moreover, loop fusion (https://reviews.llvm.org/D55851) is planning to use getGuard() to extend the kind of loops it is able to fuse, e.g. rotated loop with non-constant upper bound, which would have a loop guard.
/// Example:
/// for (int i = lb; i < ub; i+=step)
/// <loop body>
/// --- pseudo LLVMIR ---
/// beforeloop:
/// guardcmp = (lb < ub)
/// if (guardcmp) goto preheader; else goto afterloop
/// preheader:
/// loop:
/// i1 = phi[{lb, preheader}, {i2, latch}]
/// <loop body>
/// i2 = i1 + step
/// latch:
/// cmp = (i2 < ub)
/// if (cmp) goto loop
/// exit:
/// afterloop:
///
/// getBounds
/// getInitialIVValue --> lb
/// getStepInst --> i2 = i1 + step
/// getStepValue --> step
/// getFinalIVValue --> ub
/// getCanonicalPredicate --> '<'
/// getDirection --> Increasing
/// getGuard --> if (guardcmp) goto loop; else goto afterloop
/// getInductionVariable --> i1
/// getAuxiliaryInductionVariable --> {i1}
/// isCanonical --> false
Committed on behalf of @Whitney (Whitney Tsang).
Reviewers: kbarton, hfinkel, dmgreen, Meinersbur, jdoerfert, syzaara, fhahn
Reviewed By: kbarton
Subscribers: tvvikram, bmahjour, etiotto, fhahn, jsji, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60565
llvm-svn: 361517
Summary:
It was supposed that Ref LazyCallGraph::Edge's were being inserted by
inlining, but that doesn't seem to be the case. Instead, it seems that
there was no test for a blockaddress Constant in an instruction that
referenced the function that contained the instruction. Ex:
```
define void @f() {
%1 = alloca i8*, align 8
2:
store i8* blockaddress(@f, %2), i8** %1, align 8
ret void
}
```
When iterating blockaddresses, do not add the function they refer to
back to the worklist if the blockaddress is referring to the contained
function (as opposed to an external function).
Because blockaddress has sligtly different semantics than GNU C's
address of labels, there are 3 cases that can occur with blockaddress,
where only 1 can happen in GNU C due to C's scoping rules:
* blockaddress is within the function it refers to (possible in GNU C).
* blockaddress is within a different function than the one it refers to
(not possible in GNU C).
* blockaddress is used in to declare a global (not possible in GNU C).
The second case is tested in:
```
$ ./llvm/build/unittests/Analysis/AnalysisTests \
--gtest_filter=LazyCallGraphTest.HandleBlockAddress
```
This patch adjusts the iteration of blockaddresses in
LazyCallGraph::visitReferences to not revisit the blockaddresses
function in the first case.
The Linux kernel contains code that's not semantically valid at -O0;
specifically code passed to asm goto. It requires that asm goto be
inline-able. This patch conservatively does not attempt to handle the
more general case of inlining blockaddresses that have non-callbr users
(pr/39560).
https://bugs.llvm.org/show_bug.cgi?id=39560https://bugs.llvm.org/show_bug.cgi?id=40722https://github.com/ClangBuiltLinux/linux/issues/6https://reviews.llvm.org/rL212077
Reviewers: jyknight, eli.friedman, chandlerc
Reviewed By: chandlerc
Subscribers: george.burgess.iv, nathanchance, mgorny, craig.topper, mengxu.gatech, void, mehdi_amini, E5ten, chandlerc, efriedma, eraman, hiraditya, haicheng, pirama, llvm-commits, srhines
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58260
llvm-svn: 361173
This is the sibling transform for rL360899 (D61691):
maxnum(X, GreaterC) == C --> false
maxnum(X, GreaterC) <= C --> false
maxnum(X, GreaterC) < C --> false
maxnum(X, GreaterC) >= C --> true
maxnum(X, GreaterC) > C --> true
maxnum(X, GreaterC) != C --> true
llvm-svn: 361118
minnum(X, LesserC) == C --> false
minnum(X, LesserC) >= C --> false
minnum(X, LesserC) > C --> false
minnum(X, LesserC) != C --> true
minnum(X, LesserC) <= C --> true
minnum(X, LesserC) < C --> true
maxnum siblings will follow if there are no problems here.
We should be able to perform some other combines when the constants
are equal or greater-than too, but that would go in instcombine.
We might also generalize this by creating an FP ConstantRange
(similar to what we do for integers).
Differential Revision: https://reviews.llvm.org/D61691
llvm-svn: 360899
Based on ConstantRange support added in D61084, we can now handle
abs and nabs select pattern flavors in LVI.
Differential Revision: https://reviews.llvm.org/D61794
llvm-svn: 360700
Summary:
Currently InductionBinOps are only saved for FP induction variables, the PR extends it with non FP induction variable, so user of IVDescriptors can query the InductionBinOps for integer induction variables.
The changes in hasUnsafeAlgebra() and getUnsafeAlgebraInst() are required for the existing LIT test cases to pass. As described in the comment of the two functions, one of the requirement to return true is it is a FP induction variable. The checks was not needed because InductionBinOp was not set on non FP cases before.
https://reviews.llvm.org/D60565 depends on the patch.
Committed on behalf of @Whitney (Whitney Tsang).
Reviewers: jdoerfert, kbarton, fhahn, hfinkel, dmgreen, Meinersbur
Reviewed By: jdoerfert
Subscribers: mgorny, hiraditya, jsji, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61329
llvm-svn: 360671
Summary:
We hit undefined references building with ThinLTO when one source file
contained explicit instantiations of a template method (weak_odr) but
there were also implicit instantiations in another file (linkonce_odr),
and the latter was the prevailing copy. In this case the symbol was
marked hidden when the prevailing linkonce_odr copy was promoted to
weak_odr. It led to unsats when the resulting shared library was linked
with other code that contained a reference (expecting to be resolved due
to the explicit instantiation).
Add a CanAutoHide flag to the GV summary to allow the thin link to
identify when all copies are eligible for auto-hiding (because they were
all originally linkonce_odr global unnamed addr), and only do the
auto-hide in that case.
Most of the changes here are due to plumbing the new flag through the
bitcode and llvm assembly, and resulting test changes. I augmented the
existing auto-hide test to check for this situation.
Reviewers: pcc
Subscribers: mehdi_amini, inglorion, eraman, dexonsmith, arphaman, dang, llvm-commits, steven_wu, wmi
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59709
llvm-svn: 360466
If we have a large module which is mostly intrinsics, we hammer the lib call lookup path from CodeGenPrepare. Adding a fastpath reduces compile by 15% for one such example.
The problem is really more general than intrinsics - a module with lots of non-intrinsics non-libcall calls has the same problem - but we might as well avoid an easy case quickly.
llvm-svn: 360391
InsertBinop tries to move insertion-points out of loops for expressions
that are loop-invariant. This patch adds a new parameter, IsSafeToHost,
to guard that hoisting. This allows callers to suppress that hoisting
for unsafe situations, such as divisions that may have a zero
denominator.
This fixes PR38697.
Differential Revision: https://reviews.llvm.org/D55232
llvm-svn: 360280
Summary:
Preserve MemorySSA in LoopSimplify, in the old pass manager, if the analysis is available.
Do not preserve it in the new pass manager.
Update tests.
Subscribers: nemanjai, jlebar, javed.absar, Prazek, kbarton, zzheng, jsji, llvm-commits, george.burgess.iv, chandlerc
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60833
llvm-svn: 360270